Blindness and Verification of Quantum Computation with One Pure Qubit
While building a universal quantum computer remains challenging, devices of restricted power such as the so-called one pure qubit model have attracted considerable attention. An important step in the construction of these limited quantum computational devices is the understanding of whether the verification of the computation within these models could be also performed in the restricted scheme. Encoding via blindness (a cryptographic protocol for delegated computing) has proven successful for the verification of universal quantum computation with a restricted verifier. In this paper, we present the adaptation of this approach to the one pure qubit model, and present the first feasible scheme for the verification of delegated one pure qubit model of quantum computing.
Delegated Computing
Verification
Measurement-based Model
176-204
Regular Paper
Theodoros
Kapourniotis
Theodoros Kapourniotis
Elham
Kashefi
Elham Kashefi
Animesh
Datta
Animesh Datta
10.4230/LIPIcs.TQC.2014.176
S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In STOC, 2011.
D. Aharonov, M. Ben-Or, and E. Eban. Interactive proofs for quantum computations. In Proceedings of Innovations in Computer Science 2010, page 453, 2010.
H. Barnum, C. CrÃ©peau, D. Gottesman, A. Smith, and A. Tapp. Authentication of quantum messages. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), page 449, 2002.
S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther. Demonstration of blind quantum computing. Science, 335(6066):303-308, 2012.
Stefanie Barz, Joseph F Fitzsimons, Elham Kashefi, and Philip Walther. Experimental verification of quantum computation. Nature Physics, 2013.
Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic quantum computation. Annals of Physics, 298:210, 2002.
M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. A, 467:459, 2011.
A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computing. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), page 517, 2009.
D. Browne, E. Kashefi, M. Mhalla, and S. Perdrix. Generalized flow and determinism in measurement-based quantum computation. New Journal of Physics, 9:250, 2007.
V. Danos and E. Kashefi. Determinism in the one-way model. Physical Review A, 74:052310, 2006.
V. Danos, E. Kashefi, and P. Panangaden. The measurement calculus. Journal of ACM, 54:8, 2007.
A. Datta and A. Shaji. Quantum discord and quantum computing - an appraisal. International Journal of Quantum Information, 9:1787, 2011.
D. DiVincenzo. The physical implementation of quantum computation. Fortschr. Phys., 48:771, 2000.
V. Dunjko, J. Fitzsimons, C. Portmann R., and Renner. Composable security of delegated quantum computation. arXiv preprint arXiv:1301.3662, 2013.
V. Dunjko, E. Kashefi, and A. Leverrier. Universal blind quantum computing with coherent states. arXiv preprint arXiv:1108.5571, 2011.
Vedran Dunjko. Ideal quantum protocols in the non-ideal physical world. PhD Thesis, Heriot-Watt University, 2012.
B. Reichardt F., Unger, and U. Vazirani. Classical command of quantum systems. Nature, 496, 2013.
Joseph F Fitzsimons and Elham Kashefi. Unconditionally verifiable blind computation. arXiv preprint arXiv:1203.5217, 2012.
V. Giovannetti, L. Maccone, T. Morimae, and T. Rudolph. Efficient universal blind computation. arXiv preprint arXiv:1306.2724, 2013.
M. Hein, J. Eisert, and H. J. Briegel. Multi-party entanglement in graph states. Physical Review A, 69, 2004. quant-ph/0307130.
Stephen P. Jordan. Permutational quantum computing. Quantum Info. Comput., 10(5):470-497, May 2010.
E. Knill and R. Laflamme. Power of one bit of quantum information. Phys. Rev. Lett., 81:5672, 1998.
A. Mantri, C. Perez-Delgado, and J. Fitzsimons. Optimal blind quantum computation. arXiv preprint arXiv:1306.3677, 2013.
M. Mhalla, M. Murao, S. Perdrix, M. Someya, and P. Turner. Which graph states are useful for quantum information processing? In TQC Theory of Quantum Computation, Communication and Cryptography 2011, 2010.
T. Morimae, V. Dunjko, and E. Kashefi. Ground state blind quantum computation on aklt state. arXiv preprint arXiv:1009.3486, 2011.
Tomoyuki Morimae. Continuous-variable blind quantum computation. Phys. Rev. Lett., 109:230502, Dec 2012.
Tomoyuki Morimae and Keisuke Fujii. Blind topological measurement-based quantum computation. Nature Communications, 3:1036, 2012.
Tomoyuki Morimae and Keisuke Fujii. Blind quantum computation protocol in which alice only makes measurements. Phys. Rev. A, 87:050301, May 2013.
Tomoyuki Morimae, Keisuke Fujii, and Joseph F Fitzsimons. On the hardness of classically simulating the one clean qubit model. arXiv preprint arXiv:1312.2496, 2013.
Anna Pappa, AndrÃ© Chailloux, Stephanie Wehner, Eleni Diamanti, and Iordanis Kerenidis. Multipartite entanglement verification resistant against dishonest parties. Physical Review Letters, 108(26), 2012.
R. Raussendorf and H. J. Briegel. A one-way quantum computer. Physical Review Letters, 86:5188-5191, 2001.
D. Shepherd. Computing with unitaries and one pure qubit. arXiv:quant-ph/0608132, 2006.
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26:1484-1509, 1997. First published in 1995.
T. Sueki, T. Koshiba, and T. Morimae. Ancilla-driven universal blind quantum computation. Physical Review A, 87, 2013.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode