This study examines clusterability testing for a signed graph in the bounded-degree model. Our contributions are two-fold. First, we provide a quantum algorithm with query complexity Õ(N^{1/3}) for testing clusterability, which yields a polynomial speedup over the best classical clusterability tester known [Adriaens and Apers, 2023]. Second, we prove an Ω̃(√N) classical query lower bound for testing clusterability, which nearly matches the upper bound from [Adriaens and Apers, 2023]. This settles the classical query complexity of clusterability testing, and it shows that our quantum algorithm has an advantage over any classical algorithm.