We show that any alpha(n)-approximation algorithm for the n-vertex metric asymmetric Traveling Salesperson problem yields O(alpha(C))-approximation algorithms for various mixed, windy, and capacitated arc routing problems. Herein, C is the number of weakly-connected components in the subgraph induced by the positive-demand arcs, a number that can be expected to be small in applications. In conjunction with known results, we derive constant-factor approximations if C is in O(log n) and O(log(C)/log(log(C)))-approximations in general.