Though iterated maps and dynamical systems are not new to combinatorics, they have enjoyed a renewed prominence over the past decade through the elevation of the subfield that has become known as dynamical algebraic combinatorics. Some of the problems that have gained popularity can also be cast and analyzed as finite asynchronous cellular automata (CA). However, these two fields are fairly separate, and while there are some individuals who work in both, that is the exception rather than the norm. In this article, we will describe our ongoing work on toggling independent sets on graphs. This will be preceded by an overview of how this project arose from new combinatorial problems involving homomesy, toggling, and resonance. Though the techniques that we explore are directly applicable to ECA rule 1, many of them can be generalized to other cellular automata. Moreover, some of the ideas that we borrow from cellular automata can be adapted to problems in dynamical algebraic combinatorics. It is our hope that this article will inspire new problems in both fields and connections between them.