@InProceedings{vranjes_et_al:OASIcs.DX.2024.7, author = {Vranje\v{s}, Daniel and Ehrhardt, Jonas and Heesch, Ren\'{e} and Moddemann, Lukas and Steude, Henrik Sebastian and Niggemann, Oliver}, title = {{Design Principles for Falsifiable, Replicable and Reproducible Empirical Machine Learning Research}}, booktitle = {35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)}, pages = {7:1--7:13}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-356-0}, ISSN = {2190-6807}, year = {2024}, volume = {125}, editor = {Pill, Ingo and Natan, Avraham and Wotawa, Franz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.7}, URN = {urn:nbn:de:0030-drops-220991}, doi = {10.4230/OASIcs.DX.2024.7}, annote = {Keywords: machine learning, hypothesis design, research design, experimental research, statistical testing, diagnosis, planning} }