Dagstuhl Seminar Proceedings, Volume 5051,
-
Luc De Raedt, Tom Dietterich, Lise Getoor, and Stephen H. Muggleton
05051 Abstracts Collection – Probabilistic, Logical and Relational Learning - Towards a Synthesis
10.4230/DagSemProc.05051.1
-
Luc De Raedt, Tom Dietterich, Lise Getoor, and Stephen H. Muggleton
05051 Executive Summary – Probabilistic, Logical and Relational Learning - Towards a Synthesis
10.4230/DagSemProc.05051.2
-
John W. Lloyd and Tim D. Sears
An Architecture for Rational Agents
10.4230/DagSemProc.05051.3
-
Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov
BLOG: Probabilistic Models with Unknown Objects
10.4230/DagSemProc.05051.4
-
Elias Gyftodimos and Peter A. Flach
Combining Bayesian Networks with Higher-Order Data Representations
10.4230/DagSemProc.05051.5
-
Nicos Angelopoulos and James Cussens
Exploiting independence for branch operations in Bayesian learning of C&RTs
10.4230/DagSemProc.05051.6
-
Manfred Jaeger
Importance Sampling on Relational Bayesian Networks
10.4230/DagSemProc.05051.7
-
Andrea Passerini, Paolo Frasconi, and Luc De Raedt
Kernels on Prolog Proof Trees:Statistical Learning in the ILP Setting
10.4230/DagSemProc.05051.8
-
Taisuke Sato and Yoshitaka Kameya
Learning through failure
10.4230/DagSemProc.05051.9
-
Jennifer Neville and David Jensen
Leveraging relational autocorrelation with latent group models
10.4230/DagSemProc.05051.10
-
Tobias Scheffer
Multi-View Learning and Link Farm Discovery
10.4230/DagSemProc.05051.11