LIPIcs, Volume 26, TYPES 2013
-
Ralph Matthes and Aleksy Schubert
LIPIcs, Volume 26, TYPES'13, Complete Volume
10.4230/LIPIcs.TYPES.2013
-
Ralph Matthes and Aleksy Schubert
Frontmatter, Table of Contents, Preface, Conference Organization
10.4230/LIPIcs.TYPES.2013.i
-
Danel Ahman and Tarmo Uustalu
Update Monads: Cointerpreting Directed Containers
10.4230/LIPIcs.TYPES.2013.1
-
Federico Aschieri and Margherita Zorzi
A "Game Semantical" Intuitionistic Realizability Validating Markov's Principle
10.4230/LIPIcs.TYPES.2013.24
-
Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jesús Mauricio Chimento, and Carlos Luna
Formally Verified Implementation of an Idealized Model of Virtualization
10.4230/LIPIcs.TYPES.2013.45
-
Stefano Berardi and Silvia Steila
Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic
10.4230/LIPIcs.TYPES.2013.64
-
Ulrich Berger, Monika Seisenberger, and Gregory J. M. Woods
Extracting Imperative Programs from Proofs: In-place Quicksort
10.4230/LIPIcs.TYPES.2013.84
-
Marc Bezem, Thierry Coquand, and Simon Huber
A Model of Type Theory in Cubical Sets
10.4230/LIPIcs.TYPES.2013.107
-
Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and Maddalena Zacchi
Isomorphism of "Functional" Intersection Types
10.4230/LIPIcs.TYPES.2013.129
-
Joëlle Despeyroux and Kaustuv Chaudhuri
A Hybrid Linear Logic for Constrained Transition Systems
10.4230/LIPIcs.TYPES.2013.150
-
Hugo Herbelin and Arnaud Spiwack
The Rooster and the Syntactic Bracket
10.4230/LIPIcs.TYPES.2013.169
-
Danko Ilik and Keiko Nakata
A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators
10.4230/LIPIcs.TYPES.2013.188
-
Christian Retoré
The Montagovian Generative Lexicon Lambda Ty_n: a Type Theoretical Framework for Natural Language Semantics
10.4230/LIPIcs.TYPES.2013.202
-
Leonardo Rodríguez, Daniel Fridlender, and Miguel Pagano
A Certified Extension of the Krivine Machine for a Call-by-Name Higher-Order Imperative Language
10.4230/LIPIcs.TYPES.2013.230
-
Tao Xue
Definitional Extension in Type Theory
10.4230/LIPIcs.TYPES.2013.251