2 Search Results for "Behnam, Moris"


Document
Real-Time Containers: A Survey

Authors: Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V. Papadopoulos

Published in: OASIcs, Volume 80, 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)


Abstract
Container-based virtualization has gained a significant importance in a deployment of software applications in cloud-based environments. The technology fully relies on operating system features and does not require a virtualization layer (hypervisor) that introduces a performance degradation. Container-based virtualization allows to co-locate multiple isolated containers on a single computation node as well as to decompose an application into multiple containers distributed among several hosts (e.g., in fog computing layer). Such a technology seems very promising in other domains as well, e.g., in industrial automation, automotive, and aviation industry where mixed criticality containerized applications from various vendors can be co-located on shared resources. However, such industrial domains often require real-time behavior (i.e, a capability to meet predefined deadlines). These capabilities are not fully supported by the container-based virtualization yet. In this work, we provide a systematic literature survey study that summarizes the effort of the research community on bringing real-time properties in container-based virtualization. We categorize existing work into main research areas and identify possible immature points of the technology.

Cite as

Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V. Papadopoulos. Real-Time Containers: A Survey. In 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020). Open Access Series in Informatics (OASIcs), Volume 80, pp. 7:1-7:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{struhar_et_al:OASIcs.Fog-IoT.2020.7,
  author =	{Struh\'{a}r, V\'{a}clav and Behnam, Moris and Ashjaei, Mohammad and Papadopoulos, Alessandro V.},
  title =	{{Real-Time Containers: A Survey}},
  booktitle =	{2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)},
  pages =	{7:1--7:9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-144-3},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{80},
  editor =	{Cervin, Anton and Yang, Yang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Fog-IoT.2020.7},
  URN =		{urn:nbn:de:0030-drops-120011},
  doi =		{10.4230/OASIcs.Fog-IoT.2020.7},
  annote =	{Keywords: Real-Time, Containers, Docker, LXC, PREEMPT\underlineRT, Xenomai, RTAI}
}
Document
Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

Authors: Sara Afshar, Moris Behnam, Reinder J. Bril, and Thomas Nolte

Published in: LITES, Volume 4, Issue 2 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 2


Abstract
This paper investigates preemptive spin-based global resource sharing protocols for resource-constrained real-time embedded multi-core systems based on partitioned fixed-priority preemptive scheduling. We present preemptive spin-based protocols that feature (i) an increased schedulability ratio of task sets and reduced response jitter of tasks compared to the classical non-preemptive spin-based protocol, (ii) similar memory requirements for the administration of waiting tasks as for the non-preemptive protocol whilst only causing (iii) a minimal increase of the minimal number of required stacks per core from one to at most two, and (iv) strong progress guarantees to tasks. We complement these protocols with a unified worst-case response time analysis that specializes to the classical analysis for the non-preemptive protocol. The paper includes a comparative evaluation of the preemptive protocols and the non-preemptive protocol based on synthetic data.

Cite as

Sara Afshar, Moris Behnam, Reinder J. Bril, and Thomas Nolte. Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems. In LITES, Volume 4, Issue 2 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 2, pp. 03:1-03:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{afshar_et_al:LITES-v004-i002-a003,
  author =	{Afshar, Sara and Behnam, Moris and Bril, Reinder J. and Nolte, Thomas},
  title =	{{Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:30},
  ISSN =	{2199-2002},
  year =	{2018},
  volume =	{4},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES-v004-i002-a003},
  doi =		{10.4230/LITES-v004-i002-a003},
  annote =	{Keywords: Resource sharing, Real-time systems, Multiprocessors, Spin-locks}
}
  • Refine by Author
  • 2 Behnam, Moris
  • 1 Afshar, Sara
  • 1 Ashjaei, Mohammad
  • 1 Bril, Reinder J.
  • 1 Nolte, Thomas
  • Show More...

  • Refine by Classification
  • 2 Computer systems organization → Real-time systems
  • 1 Software and its engineering → Multiprocessing / multiprogramming / multitasking
  • 1 Software and its engineering → Real-time schedulability
  • 1 Software and its engineering → Virtual machines

  • Refine by Keyword
  • 1 Containers
  • 1 Docker
  • 1 LXC
  • 1 Multiprocessors
  • 1 PREEMPT_RT
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail