3 Search Results for "Hochberger, Christian"


Document
Non-Intrusive Online Timing Analysis of Large Embedded Applications

Authors: Boris Dreyer and Christian Hochberger

Published in: OASIcs, Volume 72, 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019)


Abstract
A thorough understanding of the timing behavior of embedded systems software has become very important. With the advent of ever more complex embedded software e.g. in autonomous driving, the size of this software is growing at a fast pace. Execution time profiles (ETP) have proven to be a useful way to understand the timing behavior of embedded software. Collecting these ETPs was either limited to small applications or required multiple runs of the same software for calibration processes. In this contribution, we present a novel method for collecting ETPs in a single shot of the software at very high quality even for large applications.

Cite as

Boris Dreyer and Christian Hochberger. Non-Intrusive Online Timing Analysis of Large Embedded Applications. In 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019). Open Access Series in Informatics (OASIcs), Volume 72, pp. 2:1-2:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dreyer_et_al:OASIcs.WCET.2019.2,
  author =	{Dreyer, Boris and Hochberger, Christian},
  title =	{{Non-Intrusive Online Timing Analysis of Large Embedded Applications}},
  booktitle =	{19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019)},
  pages =	{2:1--2:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-118-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{72},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2019.2},
  URN =		{urn:nbn:de:0030-drops-107674},
  doi =		{10.4230/OASIcs.WCET.2019.2},
  annote =	{Keywords: WCET, Execution Time Profiling, ARM CoreSight, Event Stream Processing}
}
Document
Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

Authors: Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener, and Alexander Weiss

Published in: OASIcs, Volume 55, 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)


Abstract
Traditionally, the Worst-Case Execution Time (WCET) of Embedded Software has been estimated using analytical approaches. This is effective, if good models of the processor/System-on-Chip (SoC) architecture exist. Unfortunately, modern high performance SoCs often contain unpredictable and/or undocumented components that influence the timing behaviour. Thus, analytical results for such processors are unrealistically pessimistic. One possible alternative approach seems to be hybrid WCET analysis, where measurement data together with an analytical approach is used to estimate worst-case behaviour. Previously, we demonstrated how continuous evaluation of basic block trace data can be used to produce detailed statistics of basic blocks in embedded software. In the meantime it has become clear that the trace data provided by modern SoCs delivers a different type of information. In this contribution, we show that even under realistic conditions, a meaningful analysis can be conducted with the trace data.

Cite as

Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener, and Alexander Weiss. Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016). Open Access Series in Informatics (OASIcs), Volume 55, pp. 4:1-4:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dreyer_et_al:OASIcs.WCET.2016.4,
  author =	{Dreyer, Boris and Hochberger, Christian and Lange, Alexander and Wegener, Simon and Weiss, Alexander},
  title =	{{Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs}},
  booktitle =	{16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)},
  pages =	{4:1--4:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-025-5},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{55},
  editor =	{Schoeberl, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2016.4},
  URN =		{urn:nbn:de:0030-drops-68977},
  doi =		{10.4230/OASIcs.WCET.2016.4},
  annote =	{Keywords: Hybrid Worst-Case Execution Time (WCET) Estimation for Multicore Processors, Real-time Systems}
}
Document
Precise Continuous Non-Intrusive Measurement-Based Execution Time Estimation

Authors: Boris Dreyer, Christian Hochberger, Simon Wegener, and Alexander Weiss

Published in: OASIcs, Volume 47, 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015)


Abstract
Precise estimation of the Worst-Case Execution Time (WCET) of embedded software is a necessary precondition in safety critical systems. Static methods for WCET analysis rely on precise models of the target processor’s micro-architecture. Measurement-based methods, in contrast, rely on exhaustive measurements performed on the real hardware. The rise of the multicore processors often renders staticWCET analysis infeasible, either due to the computational complexity or due the lack of necessary documentation. Current approaches for (hybrid) measurement-based WCET estimation process the trace data offline and thus need to store large amounts of data. In this contribution, we present a novel approach that performs continuous online aggregation of timing measurements. This enables long observation periods and increases the possibility to catch rare circumstances. Moreover, we incorporate the execution contexts of basic blocks. We can therefore account for typical cache behaviour, without being overly pessimistic.

Cite as

Boris Dreyer, Christian Hochberger, Simon Wegener, and Alexander Weiss. Precise Continuous Non-Intrusive Measurement-Based Execution Time Estimation. In 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015). Open Access Series in Informatics (OASIcs), Volume 47, pp. 45-54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{dreyer_et_al:OASIcs.WCET.2015.45,
  author =	{Dreyer, Boris and Hochberger, Christian and Wegener, Simon and Weiss, Alexander},
  title =	{{Precise Continuous Non-Intrusive Measurement-Based Execution Time Estimation}},
  booktitle =	{15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015)},
  pages =	{45--54},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-95-8},
  ISSN =	{2190-6807},
  year =	{2015},
  volume =	{47},
  editor =	{Cazorla, Francisco J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2015.45},
  URN =		{urn:nbn:de:0030-drops-52555},
  doi =		{10.4230/OASIcs.WCET.2015.45},
  annote =	{Keywords: Hybrid Worst-Case Execution Time (WCET) Estimation for Multicore Processors, Real-time Systems}
}
  • Refine by Author
  • 3 Dreyer, Boris
  • 3 Hochberger, Christian
  • 2 Wegener, Simon
  • 2 Weiss, Alexander
  • 1 Lange, Alexander

  • Refine by Classification
  • 1 Computer systems organization → Embedded systems
  • 1 Computer systems organization → Real-time systems

  • Refine by Keyword
  • 2 Hybrid Worst-Case Execution Time (WCET) Estimation for Multicore Processors
  • 2 Real-time Systems
  • 1 ARM CoreSight
  • 1 Event Stream Processing
  • 1 Execution Time Profiling
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2015
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail