5 Search Results for "Dennis, Michael"


Document
Robustness Generalizations of the Shortest Feasible Path Problem for Electric Vehicles

Authors: Payas Rajan, Moritz Baum, Michael Wegner, Tobias Zündorf, Christian J. West, Dennis Schieferdecker, and Daniel Delling

Published in: OASIcs, Volume 96, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)


Abstract
Electric Vehicle routing is often modeled as a Shortest Feasible Path Problem (SFPP), which minimizes total travel time while maintaining a non-zero State of Charge (SoC) along the route. However, the problem assumes perfect information about energy consumption and charging stations, which are difficult to even estimate in practice. Further, drivers might have varying risk tolerances for different trips. To overcome these limitations, we propose two generalizations to the SFPP; they compute the shortest feasible path for any initial SoC and, respectively, for every possible minimum SoC threshold. We present algorithmic solutions for each problem, and provide two constructs: Starting Charge Maps and Buffer Maps, which represent the tradeoffs between robustness of feasible routes and their travel times. The two constructs are useful in many ways, including presenting alternate routes or providing charging prompts to users. We evaluate the performance of our algorithms on realistic input instances.

Cite as

Payas Rajan, Moritz Baum, Michael Wegner, Tobias Zündorf, Christian J. West, Dennis Schieferdecker, and Daniel Delling. Robustness Generalizations of the Shortest Feasible Path Problem for Electric Vehicles. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics (OASIcs), Volume 96, pp. 11:1-11:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{rajan_et_al:OASIcs.ATMOS.2021.11,
  author =	{Rajan, Payas and Baum, Moritz and Wegner, Michael and Z\"{u}ndorf, Tobias and West, Christian J. and Schieferdecker, Dennis and Delling, Daniel},
  title =	{{Robustness Generalizations of the Shortest Feasible Path Problem for Electric Vehicles}},
  booktitle =	{21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
  pages =	{11:1--11:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-213-6},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{96},
  editor =	{M\"{u}ller-Hannemann, Matthias and Perea, Federico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.11},
  URN =		{urn:nbn:de:0030-drops-148807},
  doi =		{10.4230/OASIcs.ATMOS.2021.11},
  annote =	{Keywords: Electric Vehicles, Route Planning}
}
Document
Customizable Contraction Hierarchies with Turn Costs

Authors: Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
We incorporate turn restrictions and turn costs into the route planning algorithm customizable contraction hierarchies (CCH). There are two common ways to represent turn costs and restrictions. The edge-based model expands the network so that road segments become vertices and allowed turns become edges. The compact model keeps intersections as vertices, but associates a turn table with each vertex. Although CCH can be used as is on the edge-based model, the performance of preprocessing and customization is severely affected. While the expanded network is only three times larger, both preprocessing and customization time increase by up to an order of magnitude. In this work, we carefully engineer CCH to exploit different properties of the expanded graph. We reduce the increase in customization time from up to an order of magnitude to a factor of about 3. The increase in preprocessing time is reduced even further. Moreover, we present a CCH variant that works on the compact model, and show that it performs worse than the variant on the edge-based model. Surprisingly, the variant on the edge-based model even uses less space than the one on the compact model, although the compact model was developed to keep the space requirement low.

Cite as

Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf. Customizable Contraction Hierarchies with Turn Costs. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{buchhold_et_al:OASIcs.ATMOS.2020.9,
  author =	{Buchhold, Valentin and Wagner, Dorothea and Zeitz, Tim and Z\"{u}ndorf, Michael},
  title =	{{Customizable Contraction Hierarchies with Turn Costs}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{9:1--9:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.9},
  URN =		{urn:nbn:de:0030-drops-131453},
  doi =		{10.4230/OASIcs.ATMOS.2020.9},
  annote =	{Keywords: Turn costs, realistic road networks, customizable contraction hierarchies, route planning, shortest paths}
}
Document
Fast and Stable Repartitioning of Road Networks

Authors: Valentin Buchhold, Daniel Delling, Dennis Schieferdecker, and Michael Wegner

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
We study the problem of graph partitioning for evolving road networks. While the road network of the world is mostly stable, small updates happen on a relatively frequent basis, as can been observed with the OpenStreetMap project (http://www.openstreetmap.org). For various reasons, professional applications demand the graph partition to stay roughly the same over time, and that changes are limited to areas where graph updates occur. In this work, we define the problem, present algorithms to satisfy the stability needs, and evaluate our techniques on continental-sized road networks. Besides the stability gains, we show that, when the changes are low and local, running our novel techniques is an order of magnitude faster than running graph partitioning from scratch.

Cite as

Valentin Buchhold, Daniel Delling, Dennis Schieferdecker, and Michael Wegner. Fast and Stable Repartitioning of Road Networks. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{buchhold_et_al:LIPIcs.SEA.2020.26,
  author =	{Buchhold, Valentin and Delling, Daniel and Schieferdecker, Dennis and Wegner, Michael},
  title =	{{Fast and Stable Repartitioning of Road Networks}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.26},
  URN =		{urn:nbn:de:0030-drops-121000},
  doi =		{10.4230/LIPIcs.SEA.2020.26},
  annote =	{Keywords: Graph repartitioning, stable partitions, road networks, algorithm engineering}
}
Document
The Stretch Factor of Hexagon-Delaunay Triangulations

Authors: Michael Dennis, Ljubomir Perković, and Duru Türkoğlu

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
The problem of computing the exact stretch factor (i.e., the tight bound on the worst case stretch factor) of a Delaunay triangulation is one of the longstanding open problems in computational geometry. Over the years, a series of upper and lower bounds on the exact stretch factor have been obtained but the gap between them is still large. An alternative approach to solving the problem is to develop techniques for computing the exact stretch factor of "easier" types of Delaunay triangulations, in particular those defined using regular-polygons instead of a circle. Tight bounds exist for Delaunay triangulations defined using an equilateral triangle and a square. In this paper, we determine the exact stretch factor of Delaunay triangulations defined using a regular hexagon: It is 2. We think that the main contribution of this paper are the two techniques we have developed to compute tight upper bounds for the stretch factor of Hexagon-Delaunay triangulations.

Cite as

Michael Dennis, Ljubomir Perković, and Duru Türkoğlu. The Stretch Factor of Hexagon-Delaunay Triangulations. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 34:1-34:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dennis_et_al:LIPIcs.SoCG.2020.34,
  author =	{Dennis, Michael and Perkovi\'{c}, Ljubomir and T\"{u}rko\u{g}lu, Duru},
  title =	{{The Stretch Factor of Hexagon-Delaunay Triangulations}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{34:1--34:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.34},
  URN =		{urn:nbn:de:0030-drops-121920},
  doi =		{10.4230/LIPIcs.SoCG.2020.34},
  annote =	{Keywords: Delaunay triangulation, geometric spanner, plane spanner, stretch factor, spanning ratio}
}
Document
Robust Assignments via Ear Decompositions and Randomized Rounding

Authors: David Adjiashvili, Viktor Bindewald, and Dennis Michaels

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling and transshipment problems, where a set of jobs needs to be assigned to the available set of machines or personnel (resources), in a way that all jobs have assigned resources, and no two jobs share the same resource. In its nominal form, the resulting computational problem becomes the assignment problem. This paper deals with the Robust Assignment Problem (RAP) which models situations in which certain assignments are vulnerable and may become unavailable after the solution has been chosen. The goal is to choose a minimum-cost collection of assignments (edges in the corresponding bipartite graph) so that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all jobs. We develop algorithms and hardness results for RAP and establish several connections to well-known concepts from matching theory, robust optimization, LP-based techniques and combinations thereof.

Cite as

David Adjiashvili, Viktor Bindewald, and Dennis Michaels. Robust Assignments via Ear Decompositions and Randomized Rounding. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 71:1-71:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{adjiashvili_et_al:LIPIcs.ICALP.2016.71,
  author =	{Adjiashvili, David and Bindewald, Viktor and Michaels, Dennis},
  title =	{{Robust Assignments via Ear Decompositions and Randomized Rounding}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{71:1--71:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.71},
  URN =		{urn:nbn:de:0030-drops-62133},
  doi =		{10.4230/LIPIcs.ICALP.2016.71},
  annote =	{Keywords: robust optimization, matching theory, ear decomposition, randomized rounding, approximation algorithm}
}
  • Refine by Author
  • 2 Buchhold, Valentin
  • 2 Delling, Daniel
  • 2 Schieferdecker, Dennis
  • 2 Wegner, Michael
  • 1 Adjiashvili, David
  • Show More...

  • Refine by Classification
  • 3 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Shortest paths
  • 1 Applied computing → Transportation
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 1 Delaunay triangulation
  • 1 Electric Vehicles
  • 1 Graph repartitioning
  • 1 Route Planning
  • 1 Turn costs
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2020
  • 1 2016
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail