19 Search Results for "Müller-Schloer, Christian"


Document
Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

Authors: Franck Cassez, Christian Müller, and Karla Burnett

Published in: LIPIcs, Volume 29, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)


Abstract
We propose a generalisation of trace refinement for the verification of inter-procedural programs. Our method is a top-down modular, summary-based approach, and analyses inter-procedural programs by building function summaries on-demand and improving the summaries each time a function is analysed. Our method is sound, and complete relative to the existence of a modular Hoare proof for a non-recursive program. We have implemented a prototype analyser that demonstrates the main features of our approach and yields promising results.

Cite as

Franck Cassez, Christian Müller, and Karla Burnett. Summary-Based Inter-Procedural Analysis via Modular Trace Refinement. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 29, pp. 545-556, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{cassez_et_al:LIPIcs.FSTTCS.2014.545,
  author =	{Cassez, Franck and M\"{u}ller, Christian and Burnett, Karla},
  title =	{{Summary-Based Inter-Procedural Analysis via Modular Trace Refinement}},
  booktitle =	{34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)},
  pages =	{545--556},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-77-4},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{29},
  editor =	{Raman, Venkatesh and Suresh, S. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2014.545},
  URN =		{urn:nbn:de:0030-drops-48708},
  doi =		{10.4230/LIPIcs.FSTTCS.2014.545},
  annote =	{Keywords: Program verification, Hoare Logic, Refinement, Automata}
}
Document
Linking Sheet Music and Audio - Challenges and New Approaches

Authors: Verena Thomas, Christian Fremerey, Meinard Müller, and Michael Clausen

Published in: Dagstuhl Follow-Ups, Volume 3, Multimodal Music Processing (2012)


Abstract
Score and audio files are the two most important ways to represent, convey, record, store, and experience music. While score describes a piece of music on an abstract level using symbols such as notes, keys, and measures, audio files allow for reproducing a specific acoustic realization of the piece. Each of these representations reflects different facets of music yielding insights into aspects ranging from structural elements (e.g., motives, themes, musical form) to specific performance aspects (e.g., artistic shaping, sound). Therefore, the simultaneous access to score and audio representations is of great importance. In this paper, we address the problem of automatically generating musically relevant linking structures between the various data sources that are available for a given piece of music. In particular, we discuss the task of sheet music-audio synchronization with the aim to link regions in images of scanned scores to musically corresponding sections in an audio recording of the same piece. Such linking structures form the basis for novel interfaces that allow users to access and explore multimodal sources of music within a single framework. As our main contributions, we give an overview of the state-of-the-art for this kind of synchronization task, we present some novel approaches, and indicate future research directions. In particular, we address problems that arise in the presence of structural differences and discuss challenges when applying optical music recognition to complex orchestral scores. Finally, potential applications of the synchronization results are presented.

Cite as

Verena Thomas, Christian Fremerey, Meinard Müller, and Michael Clausen. Linking Sheet Music and Audio - Challenges and New Approaches. In Multimodal Music Processing. Dagstuhl Follow-Ups, Volume 3, pp. 1-22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InCollection{thomas_et_al:DFU.Vol3.11041.1,
  author =	{Thomas, Verena and Fremerey, Christian and M\"{u}ller, Meinard and Clausen, Michael},
  title =	{{Linking Sheet Music and Audio - Challenges and New Approaches}},
  booktitle =	{Multimodal Music Processing},
  pages =	{1--22},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-939897-37-8},
  ISSN =	{1868-8977},
  year =	{2012},
  volume =	{3},
  editor =	{M\"{u}ller, Meinard and Goto, Masataka and Schedl, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DFU.Vol3.11041.1},
  URN =		{urn:nbn:de:0030-drops-34637},
  doi =		{10.4230/DFU.Vol3.11041.1},
  annote =	{Keywords: Music signals, audio, sheet music, music synchronization, alignment, optical music recognition, user interfaces, multimodality}
}
Document
Software Engineering for Self-Adaptive Systems: A second Research Roadmap

Authors: Rogerio de Lemos, Holger Giese, Hausi Müller, Mary Shaw, Jesper Andersson, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cikic, Ron Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goeschka, Alessandra Gorla, Vincenzo Grassi, Poala Inverardi, Gabor Karsai, Jeff Kramer, Marin Litoiu, Antonia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Wilhelm Schlichting, Bradley Schmerl, Dennis B. Smith, Joao P. Sousa, Gabriel Tamura, Ladan Tahvildari, Norha M. Villegas, Thomas Vogel, Danny Weyns, Kenny Wong, and Jochen Wuttke

Published in: Dagstuhl Seminar Proceedings, Volume 10431, Software Engineering for Self-Adaptive Systems (2011)


Abstract
The goal of this roadmap paper is to summarize the state of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for adaptive solutions, processes, from centralized to decentralized control, and practical run-time verification and validation. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.

Cite as

Rogerio de Lemos, Holger Giese, Hausi Müller, Mary Shaw, Jesper Andersson, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cikic, Ron Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goeschka, Alessandra Gorla, Vincenzo Grassi, Poala Inverardi, Gabor Karsai, Jeff Kramer, Marin Litoiu, Antonia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Wilhelm Schlichting, Bradley Schmerl, Dennis B. Smith, Joao P. Sousa, Gabriel Tamura, Ladan Tahvildari, Norha M. Villegas, Thomas Vogel, Danny Weyns, Kenny Wong, and Jochen Wuttke. Software Engineering for Self-Adaptive Systems: A second Research Roadmap. In Software Engineering for Self-Adaptive Systems. Dagstuhl Seminar Proceedings, Volume 10431, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{delemos_et_al:DagSemProc.10431.3,
  author =	{de Lemos, Rogerio and Giese, Holger and M\"{u}ller, Hausi and Shaw, Mary and Andersson, Jesper and Baresi, Luciano and Becker, Basil and Bencomo, Nelly and Brun, Yuriy and Cikic, Bojan and Desmarais, Ron and Dustdar, Schahram and Engels, Gregor and Geihs, Kurt and Goeschka, Karl M. and Gorla, Alessandra and Grassi, Vincenzo and Inverardi, Poala and Karsai, Gabor and Kramer, Jeff and Litoiu, Marin and Lopes, Antonia and Magee, Jeff and Malek, Sam and Mankovskii, Serge and Mirandola, Raffaela and Mylopoulos, John and Nierstrasz, Oscar and Pezz\`{e}, Mauro and Prehofer, Christian and Sch\"{a}fer, Wilhelm and Schlichting, Wilhelm and Schmerl, Bradley and Smith, Dennis B. and Sousa, Joao P. and Tamura, Gabriel and Tahvildari, Ladan and Villegas, Norha M. and Vogel, Thomas and Weyns, Danny and Wong, Kenny and Wuttke, Jochen},
  title =	{{Software Engineering for Self-Adaptive Systems:  A second Research Roadmap}},
  booktitle =	{Software Engineering for Self-Adaptive Systems},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2011},
  volume =	{10431},
  editor =	{Rogerio de Lemos and Holger Giese and Hausi M\"{u}ller and Mary Shaw},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.10431.3},
  URN =		{urn:nbn:de:0030-drops-31561},
  doi =		{10.4230/DagSemProc.10431.3},
  annote =	{Keywords: }
}
Document
Sandbox Learning: Try without error?

Authors: Christian Müller-Schloer

Published in: Dagstuhl Seminar Proceedings, Volume 9201, Self-Healing and Self-Adaptive Systems (2009)


Abstract
Adaptivity is enabled by learning. Natural systems learn differently from technical systems. In particular, technical systems must not make errors. On the other hand, learning seems to be impossible without occasional errors. We propose a 3-level architecture for learning in adaptive technical systems and show its applicability in the domains of traffic control and communication network control.

Cite as

Christian Müller-Schloer. Sandbox Learning: Try without error?. In Self-Healing and Self-Adaptive Systems. Dagstuhl Seminar Proceedings, Volume 9201, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{mullerschloer:DagSemProc.09201.10,
  author =	{M\"{u}ller-Schloer, Christian},
  title =	{{Sandbox Learning: Try without error?}},
  booktitle =	{Self-Healing and Self-Adaptive Systems},
  pages =	{1--2},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9201},
  editor =	{Artur Andrzejak and Kurt Geihs and Onn Shehory and John Wilkes},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.09201.10},
  URN =		{urn:nbn:de:0030-drops-21232},
  doi =		{10.4230/DagSemProc.09201.10},
  annote =	{Keywords: Learning, real time, natural systems, technical systems}
}
Document
The Role of Models in Self-adaptive and Self-healing Systems

Authors: Jens Happe, Heiko Koziolek, Umesh Bellur, Holger Giese, Wilhelm Hasselbring, Robert Laddaga, Margaria Tiziana, Josu Martinez, Christian Müller-Schloer, and Roland Reichle

Published in: Dagstuhl Seminar Proceedings, Volume 9201, Self-Healing and Self-Adaptive Systems (2009)


Abstract
Self-healing and self-adaptive systems dynamically react on changes in the environment. They enable software systems to adjust to new conditions and work optimally even in unstable environments. However, such systems have to cope with an ever increasing complexity and size of software systems. In order to handle such systems, models are an efficient means for analysis, control, and documentation. Furthermore, hierarchically structured models can make self-healing and self-adaptation manageable. In this report, we discuss several questions that address the role of models in self-healing and self-adaptive systems. We outline today's challenges and present different viewpoints on the application and benefit of models.

Cite as

Jens Happe, Heiko Koziolek, Umesh Bellur, Holger Giese, Wilhelm Hasselbring, Robert Laddaga, Margaria Tiziana, Josu Martinez, Christian Müller-Schloer, and Roland Reichle. The Role of Models in Self-adaptive and Self-healing Systems. In Self-Healing and Self-Adaptive Systems. Dagstuhl Seminar Proceedings, Volume 9201, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{happe_et_al:DagSemProc.09201.4,
  author =	{Happe, Jens and Koziolek, Heiko and Bellur, Umesh and Giese, Holger and Hasselbring, Wilhelm and Laddaga, Robert and Tiziana, Margaria and Martinez, Josu and M\"{u}ller-Schloer, Christian and Reichle, Roland},
  title =	{{The Role of Models in Self-adaptive and Self-healing Systems}},
  booktitle =	{Self-Healing and Self-Adaptive Systems},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9201},
  editor =	{Artur Andrzejak and Kurt Geihs and Onn Shehory and John Wilkes},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.09201.4},
  URN =		{urn:nbn:de:0030-drops-21001},
  doi =		{10.4230/DagSemProc.09201.4},
  annote =	{Keywords: Self-adaptive, self-healing, models, hierarchicy}
}
Document
08141 Abstracts Collection – Organic Computing - Controlled Self-organization

Authors: Kirstie Bellman, Mike Hinchey, Christian Müller-Schloer, Hartmut Schmeck, and Rolf Würtz

Published in: Dagstuhl Seminar Proceedings, Volume 8141, Organic Computing - Controlled Self-organization (2008)


Abstract
From March 30th to April 4th 2008, the Dagstuhl Seminar 08141 "Organic Computing - Controlled Self-organization"' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.

Cite as

Kirstie Bellman, Mike Hinchey, Christian Müller-Schloer, Hartmut Schmeck, and Rolf Würtz. 08141 Abstracts Collection – Organic Computing - Controlled Self-organization. In Organic Computing - Controlled Self-organization. Dagstuhl Seminar Proceedings, Volume 8141, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{bellman_et_al:DagSemProc.08141.1,
  author =	{Bellman, Kirstie and Hinchey, Mike and M\"{u}ller-Schloer, Christian and Schmeck, Hartmut and W\"{u}rtz, Rolf},
  title =	{{08141 Abstracts Collection – Organic Computing - Controlled Self-organization}},
  booktitle =	{Organic Computing - Controlled Self-organization},
  pages =	{1--17},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8141},
  editor =	{Kirstie Bellman and Michael G. Hinchey and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08141.1},
  URN =		{urn:nbn:de:0030-drops-15675},
  doi =		{10.4230/DagSemProc.08141.1},
  annote =	{Keywords: Organic computing, self-organisation, design, adaptivity}
}
Document
08141 Executive Summary – Organic Computing - Controlled Self-organization

Authors: Kirstie Bellman, Mike Hinchey, Christian Müller-Schloer, Hartmut Schmeck, and Rolf Würtz

Published in: Dagstuhl Seminar Proceedings, Volume 8141, Organic Computing - Controlled Self-organization (2008)


Abstract
Organic Computing (OC) has become a challenging vision for the design of future information processing systems: As they become increasingly powerful, cheaper and smaller, our environment will be filled with collections of autonomous systems equipped with sensors and actuators to be aware of their environment, to communicate, and to organize themselves in order to perform the actions and servic-es that seem to be required. However, due to increasing complexity we will not be able to explicitly design and manage all intelligent components of a digitally enhanced environment in every detail and anticipate every possible configuration. Therefore, our technical systems will have to act more independently, flexibly, and autonomously, i.e., they will have to exhibit life-like properties. We call such systems "organic". Hence, an "Organic Computing System" is a technical system, which adapts dynamically to the current conditions of its environment. It will be self-organizing, self-configuring, self-healing, self-protecting, self-explaining, and context-aware.

Cite as

Kirstie Bellman, Mike Hinchey, Christian Müller-Schloer, Hartmut Schmeck, and Rolf Würtz. 08141 Executive Summary – Organic Computing - Controlled Self-organization. In Organic Computing - Controlled Self-organization. Dagstuhl Seminar Proceedings, Volume 8141, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{bellman_et_al:DagSemProc.08141.2,
  author =	{Bellman, Kirstie and Hinchey, Mike and M\"{u}ller-Schloer, Christian and Schmeck, Hartmut and W\"{u}rtz, Rolf},
  title =	{{08141 Executive Summary – Organic Computing - Controlled Self-organization}},
  booktitle =	{Organic Computing - Controlled Self-organization},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8141},
  editor =	{Kirstie Bellman and Michael G. Hinchey and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08141.2},
  URN =		{urn:nbn:de:0030-drops-15660},
  doi =		{10.4230/DagSemProc.08141.2},
  annote =	{Keywords: Organic Computing}
}
Document
A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems

Authors: Giovanna Di Marzo Serugendo, John Fitzgerald, Alexander Romanovsky, and Nicolas Guelfi

Published in: Dagstuhl Seminar Proceedings, Volume 8141, Organic Computing - Controlled Self-organization (2008)


Abstract
This paper provides a unifying view for the engineering of self-adaptive (SA) and self-organising (SO) systems. We first identify requirements for designing and building trustworthy self-adaptive and self-organising systems. Second, we propose a generic framework combining design-time and run-time features, which permit the definition and analysis at design-time of mechanisms that both ensure and constrain the run-time behaviour of an SA or SO system, thereby providing some assurance of its self-* capabilities. We show how this framework applies to both an SA and an SO system, and discuss several current proof-of-concept studies on the enabling technologies.

Cite as

Giovanna Di Marzo Serugendo, John Fitzgerald, Alexander Romanovsky, and Nicolas Guelfi. A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems. In Organic Computing - Controlled Self-organization. Dagstuhl Seminar Proceedings, Volume 8141, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{dimarzoserugendo_et_al:DagSemProc.08141.3,
  author =	{Di Marzo Serugendo, Giovanna and Fitzgerald, John and Romanovsky, Alexander and Guelfi, Nicolas},
  title =	{{A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems}},
  booktitle =	{Organic Computing - Controlled Self-organization},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8141},
  editor =	{Kirstie Bellman and Michael G. Hinchey and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08141.3},
  URN =		{urn:nbn:de:0030-drops-15637},
  doi =		{10.4230/DagSemProc.08141.3},
  annote =	{Keywords: Metadata, policies, self-adaptive, self-organising, software architecture}
}
Document
A Virtual Layer for FPGA Based Parallel Systems (MP-SoCs)

Authors: Andreas Hofmann and Klaus Waldschmidt

Published in: Dagstuhl Seminar Proceedings, Volume 8141, Organic Computing - Controlled Self-organization (2008)


Abstract
Besides performance and time to market, robustness and reliability are important design targets for modern Systemson- Chip (SoCs). Despite these features the power consumption must be as low as possible. To meet these design goals parallel, flexible, and adaptive architectures are required [1]. Today, dynamically reconfigurable FPGAs are well suited to form a parallel architecture because they incorporate serveral hard- and softcores. To efficiently use such multicore systems a hardware independent system must be created which handles all cores. Further, optimizing the power management the number of active cores must be adapted dynamically to the current workload. To make these features manageable and augment the system with adaptivity a virtual layer is required which hides the – due to runtime reconfiguration – changing hardware system from the application software. The Scalable Dataflow-driven Virtual Machine [2] is such a virtualization of a parallel, adaptive and heterogeneous cluster of processing elements (PE). Thus, it is well suited to serve as a managing firmware for multicore FPGAs.

Cite as

Andreas Hofmann and Klaus Waldschmidt. A Virtual Layer for FPGA Based Parallel Systems (MP-SoCs). In Organic Computing - Controlled Self-organization. Dagstuhl Seminar Proceedings, Volume 8141, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{hofmann_et_al:DagSemProc.08141.4,
  author =	{Hofmann, Andreas and Waldschmidt, Klaus},
  title =	{{A Virtual Layer for FPGA Based Parallel Systems (MP-SoCs)}},
  booktitle =	{Organic Computing - Controlled Self-organization},
  pages =	{1--2},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8141},
  editor =	{Kirstie Bellman and Michael G. Hinchey and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08141.4},
  URN =		{urn:nbn:de:0030-drops-15610},
  doi =		{10.4230/DagSemProc.08141.4},
  annote =	{Keywords: }
}
Document
Biologically Inspired Methods for Organizing Distributed Services on Sensor Networks

Authors: Franz Rammig, Tales Heimfarth, and Peter Janacik

Published in: Dagstuhl Seminar Proceedings, Volume 8141, Organic Computing - Controlled Self-organization (2008)


Abstract
We propose to make use of a completely distributed way of implementing OS services for wireless sensor networks (WSN). I.e. instead of having an instance of the OS on each node of a WSN the services of the OS are distributed over the WSN. Of course this approach implies specific challenges. Two of them are discussed in the paper: Migration of services to nodes such that the overall communication costs are minimized and forming clusters with the tendency to concentrate service requests inside the clusters and at the same time minimizing intra-cluster communication. For both problems biologically inspired solutions are discussed. Service migration is mapped on an Ant Colony Optimization (ACO) technique while as a clustering heuristics Division of Labor in swarms of social insects is used.

Cite as

Franz Rammig, Tales Heimfarth, and Peter Janacik. Biologically Inspired Methods for Organizing Distributed Services on Sensor Networks. In Organic Computing - Controlled Self-organization. Dagstuhl Seminar Proceedings, Volume 8141, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{rammig_et_al:DagSemProc.08141.5,
  author =	{Rammig, Franz and Heimfarth, Tales and Janacik, Peter},
  title =	{{Biologically Inspired Methods for Organizing Distributed Services on Sensor Networks}},
  booktitle =	{Organic Computing - Controlled Self-organization},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8141},
  editor =	{Kirstie Bellman and Michael G. Hinchey and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08141.5},
  URN =		{urn:nbn:de:0030-drops-15656},
  doi =		{10.4230/DagSemProc.08141.5},
  annote =	{Keywords: Wireless Sensor Networks, clustering, service migration, Ant Colony Algorithms}
}
Document
Current state of ASoC design methodology

Authors: Andreas Bernauer, Dirk Fritz, Björn Sander, Oliver Bringmann, and Wolfgang Rosenstiel

Published in: Dagstuhl Seminar Proceedings, Volume 8141, Organic Computing - Controlled Self-organization (2008)


Abstract
This paper gives an overview of the current state of ASoC design methodology and presents preliminary results on evaluating the learning classifier system XCS for the control of a QuadCore. The ASoC design methodology can determine system reliability based on activity, power and temperature analysis, together with reliability block diagrams. The evaluation of the XCS shows that in the evaluated setup, XCS can find optimal operating points, even in changed environments or with changed reward functions. This even works, though limited, without the genetic algorithm the XCS uses internally. The results motivate us to continue the evaluation for more complex setups.

Cite as

Andreas Bernauer, Dirk Fritz, Björn Sander, Oliver Bringmann, and Wolfgang Rosenstiel. Current state of ASoC design methodology. In Organic Computing - Controlled Self-organization. Dagstuhl Seminar Proceedings, Volume 8141, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{bernauer_et_al:DagSemProc.08141.6,
  author =	{Bernauer, Andreas and Fritz, Dirk and Sander, Bj\"{o}rn and Bringmann, Oliver and Rosenstiel, Wolfgang},
  title =	{{Current state of ASoC design methodology}},
  booktitle =	{Organic Computing - Controlled Self-organization},
  pages =	{1--17},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8141},
  editor =	{Kirstie Bellman and Michael G. Hinchey and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08141.6},
  URN =		{urn:nbn:de:0030-drops-15646},
  doi =		{10.4230/DagSemProc.08141.6},
  annote =	{Keywords: Dagstuhl Seminar Proceedings, System-on-Chip, design methodology, system reliability, learning classifier system, XCS, ASoC}
}
Document
16. Improved Search for Night Train Connections

Authors: Thorsten Gunkel, Matthias Müller-Hannemann, and Mathias Schnee

Published in: OASIcs, Volume 7, 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'07) (2007)


Abstract
The search for attractive night train connections is fundamentally different from ordinary search: the primary objective of a costumer of a night train is to have a reasonably long sleeping period without interruptions due to train changes. For most passenger it is also undesired to reach the final destination too early in the morning. These objectives are in sharp contrast to standard information systems which focus on minimizing the total travel time. In this paper we present and compare two new approaches to support queries for night train connections. These approaches have been integrated into the Multi-Objective Traffic Information System (MOTIS) which is currently developed by our group. Its purpose is to find all train connections which are attractive from a costumer point of view. With a computational study we demonstrate that our specialized algorithms for night train connections are able to satisfy costumer queries much better than standard methods. This can be achieved with reasonable computational costs: a specialized night train search requires only a few seconds of CPU time.

Cite as

Thorsten Gunkel, Matthias Müller-Hannemann, and Mathias Schnee. 16. Improved Search for Night Train Connections. In 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'07). Open Access Series in Informatics (OASIcs), Volume 7, pp. 243-258, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{gunkel_et_al:OASIcs.ATMOS.2007.1178,
  author =	{Gunkel, Thorsten and M\"{u}ller-Hannemann, Matthias and Schnee, Mathias},
  title =	{{16. Improved Search for Night Train Connections}},
  booktitle =	{7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'07)},
  pages =	{243--258},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-04-0},
  ISSN =	{2190-6807},
  year =	{2007},
  volume =	{7},
  editor =	{Ahuja, Ravindra K. and Liebchen, Christian and Mesa, Juan A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2007.1178},
  URN =		{urn:nbn:de:0030-drops-11781},
  doi =		{10.4230/OASIcs.ATMOS.2007.1178},
  annote =	{Keywords: Timetable information system, multi-criteria optimization, night trains, computational study}
}
Document
Towards Class-Based Dynamic Voltage Scaling for Multimedia Applications

Authors: Richard Urunuela, Gilles Muller, and Julia Lawall

Published in: Dagstuhl Seminar Proceedings, Volume 7041, Power-aware Computing Systems (2007)


Abstract
Video display has significant, but highly variable, CPU requirements. As such, it is an attractive target for power management via dynamic voltage scaling. In previous work, we have proposed a dynamic voltage scaling algorithm directed to the context of video kiosks, in which a minimal frequency for each frame can be determined experimentally based on observations taken during the first few iterations of the video. In this paper, we review that work, and begin to consider how such an approach can be adapted to the more common case where a video is only played once, on hardware that is not known in advance.

Cite as

Richard Urunuela, Gilles Muller, and Julia Lawall. Towards Class-Based Dynamic Voltage Scaling for Multimedia Applications. In Power-aware Computing Systems. Dagstuhl Seminar Proceedings, Volume 7041, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{urunuela_et_al:DagSemProc.07041.12,
  author =	{Urunuela, Richard and Muller, Gilles and Lawall, Julia},
  title =	{{Towards Class-Based Dynamic Voltage Scaling for Multimedia Applications}},
  booktitle =	{Power-aware Computing Systems},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7041},
  editor =	{Luca Benini and Naehyuck Chang and Ulrich Kremer and Christian W. Probst},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.07041.12},
  URN =		{urn:nbn:de:0030-drops-11088},
  doi =		{10.4230/DagSemProc.07041.12},
  annote =	{Keywords: Dynamic voltage scaling, multimedia applications, embedded systems}
}
Document
06031 Abstracts Collection – Organic Computing – Controlled Emergence

Authors: Kirstie Bellman, Peter Hofmann, Christian Müller-Schloer, Hartmut Schmeck, and Rolf P. Würtz

Published in: Dagstuhl Seminar Proceedings, Volume 6031, Organic Computing - Controlled Emergence (2006)


Abstract
Organic Computing has emerged recently as a challenging vision for future information processing systems, based on the insight that we will soon be surrounded by large collections of autonomous systems equipped with sensors and actuators to be aware of their environment, to communicate freely, and to organize themselves in order to perform the actions and services required. Organic Computing Systems will adapt dynamically to the current conditions of its environment, they will be self-organizing, self-configuring, self-healing, self-protecting, self-explaining, and context-aware. From 15.01.06 to 20.01.06, the Dagstuhl Seminar 06031 ``Organic Computing – Controlled Emergence'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. The seminar was characterized by the very constructive search for common ground between engineering and natural sciences, between informatics on the one hand and biology, neuroscience, and chemistry on the other. The common denominator was the objective to build practically usable self-organizing and emergent systems or their components. An indicator for the practical orientation of the seminar was the large number of OC application systems, envisioned or already under implementation, such as the Internet, robotics, wireless sensor networks, traffic control, computer vision, organic systems on chip, an adaptive and self-organizing room with intelligent sensors or reconfigurable guiding systems for smart office buildings. The application orientation was also apparent by the large number of methods and tools presented during the seminar, which might be used as building blocks for OC systems, such as an evolutionary design methodology, OC architectures, especially several implementations of observer/controller structures, measures and measurement tools for emergence and complexity, assertion-based methods to control self-organization, wrappings, a software methodology to build reflective systems, and components for OC middleware. Organic Computing is clearly oriented towards applications but is augmented at the same time by more theoretical bio-inspired and nature-inspired work, such as chemical computing, theory of complex systems and non-linear dynamics, control mechanisms in insect swarms, homeostatic mechanisms in the brain, a quantitative approach to robustness, abstraction and instantiation as a central metaphor for understanding complex systems. Compared to its beginnings, Organic Computing is coming of age. The OC vision is increasingly padded with meaningful applications and usable tools, but the path towards full OC systems is still complex. There is progress in a more scientific understanding of emergent processes. In the future, we must understand more clearly how to open the configuration space of technical systems for on-line modification. Finally, we must make sure that the human user remains in full control while allowing the systems to optimize.

Cite as

Kirstie Bellman, Peter Hofmann, Christian Müller-Schloer, Hartmut Schmeck, and Rolf P. Würtz. 06031 Abstracts Collection – Organic Computing – Controlled Emergence. In Organic Computing - Controlled Emergence. Dagstuhl Seminar Proceedings, Volume 6031, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{bellman_et_al:DagSemProc.06031.1,
  author =	{Bellman, Kirstie and Hofmann, Peter and M\"{u}ller-Schloer, Christian and Schmeck, Hartmut and W\"{u}rtz, Rolf P.},
  title =	{{06031 Abstracts Collection – Organic Computing – Controlled Emergence}},
  booktitle =	{Organic Computing - Controlled Emergence},
  pages =	{1--19},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6031},
  editor =	{Kirstie Bellman and Peter Hofmann and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06031.1},
  URN =		{urn:nbn:de:0030-drops-5777},
  doi =		{10.4230/DagSemProc.06031.1},
  annote =	{Keywords: Emergence, self-organization, self-configuration, self-healing, self-protection, self-explaining, context-awareness}
}
Document
06031 Executive Summary – Organic Computing – Controlled Emergence

Authors: Kirstie Bellman, Peter Hofmann, Christian Müller-Schloer, Hartmut Schmeck, and Rolf P. Würtz

Published in: Dagstuhl Seminar Proceedings, Volume 6031, Organic Computing - Controlled Emergence (2006)


Abstract
Organic Computing has emerged recently as a challenging vision for future information processing systems, based on the insight that we will soon be surrounded by systems with massive numbers of processing elements, sensors and actuators, many of which will be autonomous. Because of the size of these systems it is infeasible for us to monitor and control them entirely from external observations; instead they will need to help us monitor, control and adapt themselves. To do so, these components will need to be aware of their environment, to communicate freely, and to organize themselves in order to perform the actions and services that are required. The presence of networks of intelligent systems in our environment opens up fascinating application areas but, at the same time, bears the problem of their controllability. Hence, we have to construct these systems which we increasingly depend on as robust, safe, flexible, and trustworthy as possible. In particular, a strong orientation towards human needs as opposed to a pure implementation of the technologically possible seems absolutely central. In order to achieve these goals, our technical systems will have to act more independently, flexibly, and autonomously, i.e., they will have to exhibit lifelike properties. We call those systems ''organic''. Hence, an ''Organic Computing System'' is a technical system which adapts dynamically to the current conditions of its environment. It will be selforganizing, selfconfiguring, selfhealing, selfprotecting, selfexplaining, and context-aware.

Cite as

Kirstie Bellman, Peter Hofmann, Christian Müller-Schloer, Hartmut Schmeck, and Rolf P. Würtz. 06031 Executive Summary – Organic Computing – Controlled Emergence. In Organic Computing - Controlled Emergence. Dagstuhl Seminar Proceedings, Volume 6031, pp. 1-3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{bellman_et_al:DagSemProc.06031.2,
  author =	{Bellman, Kirstie and Hofmann, Peter and M\"{u}ller-Schloer, Christian and Schmeck, Hartmut and W\"{u}rtz, Rolf P.},
  title =	{{06031 Executive Summary – Organic Computing – Controlled Emergence}},
  booktitle =	{Organic Computing - Controlled Emergence},
  pages =	{1--3},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6031},
  editor =	{Kirstie Bellman and Peter Hofmann and Christian M\"{u}ller-Schloer and Hartmut Schmeck and Rolf W\"{u}rtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06031.2},
  URN =		{urn:nbn:de:0030-drops-5788},
  doi =		{10.4230/DagSemProc.06031.2},
  annote =	{Keywords: Emergence, self-organization, self-configuration, self-healing, self-protection, self-explaining, context-awareness}
}
  • Refine by Author
  • 6 Müller-Schloer, Christian
  • 4 Bellman, Kirstie
  • 4 Schmeck, Hartmut
  • 3 Würtz, Rolf P.
  • 2 Giese, Holger
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 4 self-organization
  • 3 self-healing
  • 2 Emergence
  • 2 context-awareness
  • 2 self-configuration
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 6 2006
  • 6 2008
  • 2 2007
  • 2 2009
  • 1 2011
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail