3 Search Results for "Rubin, Natan"


Document
Bounding Radon Number via Betti Numbers

Authors: Zuzana Patáková

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ₂ coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.

Cite as

Zuzana Patáková. Bounding Radon Number via Betti Numbers. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 61:1-61:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{patakova:LIPIcs.SoCG.2020.61,
  author =	{Pat\'{a}kov\'{a}, Zuzana},
  title =	{{Bounding Radon Number via Betti Numbers}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{61:1--61:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.61},
  URN =		{urn:nbn:de:0030-drops-122198},
  doi =		{10.4230/LIPIcs.SoCG.2020.61},
  annote =	{Keywords: Radon number, topological complexity, constrained chain maps, fractional Helly theorem, convexity spaces}
}
Document
Further Consequences of the Colorful Helly Hypothesis

Authors: Leonardo Martínez-Sandoval, Edgardo Roldán-Pensado, and Natan Rubin

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
Let F be a family of convex sets in R^d, which are colored with d+1 colors. We say that F satisfies the Colorful Helly Property if every rainbow selection of d+1 sets, one set from each color class, has a non-empty common intersection. The Colorful Helly Theorem of Lovász states that for any such colorful family F there is a color class F_i subset F, for 1 <= i <= d+1, whose sets have a non-empty intersection. We establish further consequences of the Colorful Helly hypothesis. In particular, we show that for each dimension d >= 2 there exist numbers f(d) and g(d) with the following property: either one can find an additional color class whose sets can be pierced by f(d) points, or all the sets in F can be crossed by g(d) lines.

Cite as

Leonardo Martínez-Sandoval, Edgardo Roldán-Pensado, and Natan Rubin. Further Consequences of the Colorful Helly Hypothesis. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 59:1-59:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{martinezsandoval_et_al:LIPIcs.SoCG.2018.59,
  author =	{Mart{\'\i}nez-Sandoval, Leonardo and Rold\'{a}n-Pensado, Edgardo and Rubin, Natan},
  title =	{{Further Consequences of the Colorful Helly Hypothesis}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{59:1--59:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.59},
  URN =		{urn:nbn:de:0030-drops-87726},
  doi =		{10.4230/LIPIcs.SoCG.2018.59},
  annote =	{Keywords: geometric transversals, convex sets, colorful Helly-type theorems, line transversals, weak epsilon-nets, transversal numbers}
}
Document
Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

Authors: Pankaj K. Agarwal, Natan Rubin, and Micha Sharir

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
We consider the Approximate Nearest Neighbor (ANN) problem where the input set consists of n k-flats in the Euclidean Rd, for any fixed parameters k<d, and where, for each query point q, we want to return an input flat whose distance from q is at most (1 + epsilon) times the shortest such distance, where epsilon > 0 is another prespecified parameter. We present an algorithm that achieves this task with n^{k+1}(log(n)/epsilon)^O(1) storage and preprocessing (where the constant of proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n)) time (where the power of the logarithm depends on d and k). In particular, we need only near-quadratic storage to answer ANN queries amidst a set of n lines in any fixed-dimensional Euclidean space. As a by-product, our approach also yields an algorithm, with similar performance bounds, for answering exact nearest neighbor queries amidst k-flats with respect to any polyhedral distance function. Our results are more general, in that they also provide a tradeoff between storage and query time.

Cite as

Pankaj K. Agarwal, Natan Rubin, and Micha Sharir. Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 4:1-4:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ESA.2017.4,
  author =	{Agarwal, Pankaj K. and Rubin, Natan and Sharir, Micha},
  title =	{{Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{4:1--4:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.4},
  URN =		{urn:nbn:de:0030-drops-78182},
  doi =		{10.4230/LIPIcs.ESA.2017.4},
  annote =	{Keywords: Approximate nearest neighbor search, k-flats, Polyhedral distance functions, Linear programming queries}
}
  • Refine by Author
  • 2 Rubin, Natan
  • 1 Agarwal, Pankaj K.
  • 1 Martínez-Sandoval, Leonardo
  • 1 Patáková, Zuzana
  • 1 Roldán-Pensado, Edgardo
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Geometric topology
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 1 Approximate nearest neighbor search
  • 1 Linear programming queries
  • 1 Polyhedral distance functions
  • 1 Radon number
  • 1 colorful Helly-type theorems
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2017
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail