51 Search Results for "Aceto, Luca"


Volume

LIPIcs, Volume 42

26th International Conference on Concurrency Theory (CONCUR 2015)

CONCUR 2015, September 1-4, 2015, Madrid, Spain

Editors: Luca Aceto and David de Frutos Escrig

Document
Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes

Authors: Antonis Achilleos and Aggeliki Chalki

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We present quantitative logics with two-step semantics based on the framework of quantitative logics introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented with a least fixed point operator capture interesting classes of counting problems. Specifically, we answer an open question in the area of descriptive complexity of counting problems by providing logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE and SpanPSPACE, which are counting versions of PSPACE.

Cite as

Antonis Achilleos and Aggeliki Chalki. Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{achilleos_et_al:LIPIcs.MFCS.2023.7,
  author =	{Achilleos, Antonis and Chalki, Aggeliki},
  title =	{{Counting Computations with Formulae: Logical Characterisations of Counting Complexity Classes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.7},
  URN =		{urn:nbn:de:0030-drops-185412},
  doi =		{10.4230/LIPIcs.MFCS.2023.7},
  annote =	{Keywords: descriptive complexity, quantitative logics, counting problems, #P}
}
Document
On the Axiomatisation of Branching Bisimulation Congruence over CCS

Authors: Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion of equivalence that abstracts from internal computational steps in process behaviour. Firstly, we show that CCS is not finitely based modulo the considered congruence. As a key step of independent interest in the proof of that negative result, we prove that each CCS process has a unique parallel decomposition into indecomposable processes modulo branching bisimilarity. As a second main contribution, we show that, when the set of actions is finite, rooted branching bisimilarity has a finite equational basis over CCS enriched with the left merge and communication merge operators from ACP.

Cite as

Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik. On the Axiomatisation of Branching Bisimulation Congruence over CCS. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2022.6,
  author =	{Aceto, Luca and Castiglioni, Valentina and Ing\'{o}lfsd\'{o}ttir, Anna and Luttik, Bas},
  title =	{{On the Axiomatisation of Branching Bisimulation Congruence over CCS}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.6},
  URN =		{urn:nbn:de:0030-drops-170692},
  doi =		{10.4230/LIPIcs.CONCUR.2022.6},
  annote =	{Keywords: Equational basis, Weak semantics, CCS, Parallel composition}
}
Document
A Coinductive Version of Milner’s Proof System for Regular Expressions Modulo Bisimilarity

Authors: Clemens Grabmayer

Published in: LIPIcs, Volume 211, 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)


Abstract
By adapting Salomaa’s complete proof system for equality of regular expressions under the language semantics, Milner (1984) formulated a sound proof system for bisimilarity of regular expressions under the process interpretation he introduced. He asked whether this system is complete. Proof-theoretic arguments attempting to show completeness of this equational system are complicated by the presence of a non-algebraic rule for solving fixed-point equations by using star iteration. We characterize the derivational power that the fixed-point rule adds to the purely equational part Mil- of Milner’s system Mil: it corresponds to the power of coinductive proofs over Mil- that have the form of finite process graphs with the loop existence and elimination property LEE. We define a variant system cMil by replacing the fixed-point rule in Mil with a rule that permits LEE-shaped circular derivations in Mil- from previously derived equations as a premise. With this rule alone we also define the variant system CLC for combining LEE-shaped coinductive proofs over Mil-. We show that both cMil and CLC have proof interpretations in Mil, and vice versa. As this correspondence links, in both directions, derivability in Mil with derivation trees of process graphs, it widens the space for graph-based approaches to finding a completeness proof of Milner’s system.

Cite as

Clemens Grabmayer. A Coinductive Version of Milner’s Proof System for Regular Expressions Modulo Bisimilarity. In 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 211, pp. 16:1-16:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grabmayer:LIPIcs.CALCO.2021.16,
  author =	{Grabmayer, Clemens},
  title =	{{A Coinductive Version of Milner’s Proof System for Regular Expressions Modulo Bisimilarity}},
  booktitle =	{9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)},
  pages =	{16:1--16:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-212-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{211},
  editor =	{Gadducci, Fabio and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2021.16},
  URN =		{urn:nbn:de:0030-drops-153712},
  doi =		{10.4230/LIPIcs.CALCO.2021.16},
  annote =	{Keywords: regular expressions, process theory, bisimilarity, coinduction, proof theory}
}
Document
The Best a Monitor Can Do

Authors: Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Existing notions of monitorability for branching-time properties are fairly restrictive. This, in turn, impacts the ability to incorporate prior knowledge about the system under scrutiny - which corresponds to a branching-time property - into the runtime analysis. We propose a definition of optimal monitors that verify the best monitorable under- or over-approximation of a specification, regardless of its monitorability status. Optimal monitors can be obtained for arbitrary branching-time properties by synthesising a sound and complete monitor for their strongest monitorable consequence. We show that the strongest monitorable consequence of specifications expressed in Hennessy-Milner logic with recursion is itself expressible in this logic, and present a procedure to find it. Our procedure enables prior knowledge to be optimally incorporated into runtime monitors.

Cite as

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. The Best a Monitor Can Do. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CSL.2021.7,
  author =	{Aceto, Luca and Achilleos, Antonis and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna and Lehtinen, Karoliina},
  title =	{{The Best a Monitor Can Do}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.7},
  URN =		{urn:nbn:de:0030-drops-134416},
  doi =		{10.4230/LIPIcs.CSL.2021.7},
  annote =	{Keywords: monitorability, branching-time logics, runtime verification}
}
Document
Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

Authors: Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Bergstra and Klop have shown that bisimilarity has a finite equational axiomatisation over ACP/CCS extended with the binary left and communication merge operators. Moller proved that auxiliary operators are necessary to obtain a finite axiomatisation of bisimilarity over CCS, and Aceto et al. showed that this remains true when Hennessy’s merge is added to that language. These results raise the question of whether there is one auxiliary binary operator whose addition to CCS leads to a finite axiomatisation of bisimilarity. This study provides a negative answer to that question based on three reasonable assumptions.

Cite as

Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CSL.2021.8,
  author =	{Aceto, Luca and Castiglioni, Valentina and Fokkink, Wan and Ing\'{o}lfsd\'{o}ttir, Anna and Luttik, Bas},
  title =	{{Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.8},
  URN =		{urn:nbn:de:0030-drops-134425},
  doi =		{10.4230/LIPIcs.CSL.2021.8},
  annote =	{Keywords: Equational logic, CCS, bisimulation, parallel composition, non-finitely based algebras}
}
Document
Invited Paper
CONCUR Test-Of-Time Award 2020 Announcement (Invited Paper)

Authors: Luca Aceto, Jos Baeten, Patricia Bouyer-Decitre, Holger Hermanns, and Alexandra Silva

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
This short article announces the recipients of the CONCUR Test-of-Time Award 2020.

Cite as

Luca Aceto, Jos Baeten, Patricia Bouyer-Decitre, Holger Hermanns, and Alexandra Silva. CONCUR Test-Of-Time Award 2020 Announcement (Invited Paper). In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 5:1-5:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2020.5,
  author =	{Aceto, Luca and Baeten, Jos and Bouyer-Decitre, Patricia and Hermanns, Holger and Silva, Alexandra},
  title =	{{CONCUR Test-Of-Time Award 2020 Announcement}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{5:1--5:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.5},
  URN =		{urn:nbn:de:0030-drops-128172},
  doi =		{10.4230/LIPIcs.CONCUR.2020.5},
  annote =	{Keywords: Concurrency, CONCUR Test-of-Time Award}
}
Document
On the Axiomatisability of Parallel Composition: A Journey in the Spectrum

Authors: Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias Ruggaard Pedersen

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
This paper studies the existence of finite equational axiomatisations of the interleaving parallel composition operator modulo the behavioural equivalences in van Glabbeek’s linear time-branching time spectrum. In the setting of the process algebra BCCSP over a finite set of actions, we provide finite, ground-complete axiomatisations for various simulation and (decorated) trace semantics. On the other hand, we show that no congruence over that language that includes bisimilarity and is included in possible futures equivalence has a finite, ground-complete axiomatisation. This negative result applies to all the nested trace and nested simulation semantics.

Cite as

Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias Ruggaard Pedersen. On the Axiomatisability of Parallel Composition: A Journey in the Spectrum. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2020.18,
  author =	{Aceto, Luca and Castiglioni, Valentina and Ing\'{o}lfsd\'{o}ttir, Anna and Luttik, Bas and Pedersen, Mathias Ruggaard},
  title =	{{On the Axiomatisability of Parallel Composition: A Journey in the Spectrum}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.18},
  URN =		{urn:nbn:de:0030-drops-128303},
  doi =		{10.4230/LIPIcs.CONCUR.2020.18},
  annote =	{Keywords: Axiomatisation, Parallel composition, Linear time-branching time spectrum}
}
Document
On Runtime Enforcement via Suppressions

Authors: Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
Runtime enforcement is a dynamic analysis technique that uses monitors to enforce the behaviour specified by some correctness property on an executing system. The enforceability of a logic captures the extent to which the properties expressible via the logic can be enforced at runtime. We study the enforceability of Hennessy-Milner Logic with Recursion (muHML) with respect to suppression enforcement. We develop an operational framework for enforcement which we then use to formalise when a monitor enforces a muHML property. We also show that the safety syntactic fragment of the logic, sHML, is enforceable by providing an automated synthesis function that generates correct suppression monitors from sHML formulas.

Cite as

Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On Runtime Enforcement via Suppressions. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2018.34,
  author =	{Aceto, Luca and Cassar, Ian and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna},
  title =	{{On Runtime Enforcement via Suppressions}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.34},
  URN =		{urn:nbn:de:0030-drops-95729},
  doi =		{10.4230/LIPIcs.CONCUR.2018.34},
  annote =	{Keywords: Enforceability, Suppression Enforcement, Monitor Synthesis, Logic}
}
Document
Monitoring for Silent Actions

Authors: Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir

Published in: LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)


Abstract
Silent actions are an essential mechanism for system modelling and specification. They are used to abstractly report the occurrence of computation steps without divulging their precise details, thereby enabling the description of important aspects such as the branching structure of a system. Yet, their use rarely features in specification logics used in runtime verification. We study monitorability aspects of a branching-time logic that employs silent actions, identifying which formulas are monitorable for a number of instrumentation setups. We also consider defective instrumentation setups that imprecisely report silent events, and establish monitorability results for tolerating these imperfections.

Cite as

Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for Silent Actions. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.FSTTCS.2017.7,
  author =	{Aceto, Luca and Achilleos, Antonis and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna},
  title =	{{Monitoring for Silent Actions}},
  booktitle =	{37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-055-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{93},
  editor =	{Lokam, Satya and Ramanujam, R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.7},
  URN =		{urn:nbn:de:0030-drops-84023},
  doi =		{10.4230/LIPIcs.FSTTCS.2017.7},
  annote =	{Keywords: Runtime Verification, Monitorability, Hennessy-Milner Logic with Recursion, Silent Actions}
}
Document
Rule Formats for Nominal Process Calculi

Authors: Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir, and Yolanda Ortega-Mallén

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
The nominal transition systems (NTSs) of Parrow et al. describe the operational semantics of nominal process calculi. We study NTSs in terms of the nominal residual transition systems (NRTSs) that we introduce. We provide rule formats for the specifications of NRTSs that ensure that the associated NRTS is an NTS and apply them to the operational specification of the early pi-calculus. Our study stems from the recent Nominal SOS of Cimini et al. and from earlier works in nominal sets and nominal logic by Gabbay, Pitts and their collaborators.

Cite as

Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir, and Yolanda Ortega-Mallén. Rule Formats for Nominal Process Calculi. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2017.10,
  author =	{Aceto, Luca and F\'{a}bregas, Ignacio and Garc{\'\i}a-P\'{e}rez, \'{A}lvaro and Ing\'{o}lfsd\'{o}ttir, Anna and Ortega-Mall\'{e}n, Yolanda},
  title =	{{Rule Formats for Nominal Process Calculi}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.10},
  URN =		{urn:nbn:de:0030-drops-77869},
  doi =		{10.4230/LIPIcs.CONCUR.2017.10},
  annote =	{Keywords: nominal sets, nominal structural operational semantics, process algebra, nominal transition systems, scope opening, rule formats}
}
Document
Complete Volume
LIPIcs, Volume 42, CONCUR'15, Complete Volume

Authors: Luca Aceto and David de Frutos Escrig

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
LIPIcs, Volume 42, CONCUR'15, Complete Volume

Cite as

26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Proceedings{aceto_et_al:LIPIcs.CONCUR.2015,
  title =	{{LIPIcs, Volume 42, CONCUR'15, Complete Volume}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015},
  URN =		{urn:nbn:de:0030-drops-54628},
  doi =		{10.4230/LIPIcs.CONCUR.2015},
  annote =	{Keywords: Computer-Communication Networks, Software Engineering, Computation by Abstract Devices, Logics and Meanings of Programs, Simulation and Modeling}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Committees, External Reviewers

Authors: Luca Aceto and David de Frutos Escrig

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
Front Matter, Table of Contents, Preface, Committees, External Reviewers

Cite as

26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, pp. i-xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2015.i,
  author =	{Aceto, Luca and de Frutos Escrig, David},
  title =	{{Front Matter, Table of Contents, Preface, Committees, External Reviewers}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{i--xiv},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.i},
  URN =		{urn:nbn:de:0030-drops-53610},
  doi =		{10.4230/LIPIcs.CONCUR.2015.i},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Committees, External Reviewers}
}
Document
Invited Paper
Automatic Application Deployment in the Cloud: from Practice to Theory and Back (Invited Paper)

Authors: Roberto Di Cosmo, Michael Lienhardt, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Zavattaro, and Jakub Zwolakowski

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
The problem of deploying a complex software application has been formally investigated in previous work by means of the abstract component model named Aeolus. As the problem turned out to be undecidable, simplified versions of the model were investigated in which decidability was restored by introducing limitations on the ways components are described. In this paper, we take an opposite approach, and investigate the possibility to address a relaxed version of the deployment problem without limiting the expressiveness of the component model. We identify three problems to be solved in sequence: (i) the verification of the existence of a final configuration in which all the constraints imposed by the single components are satisfied, (ii) the generation of a concrete configuration satisfying such constraints, and (iii) the synthesis of a plan to reach such a configuration possibly going through intermediary configurations that violate the non-functional constraints.

Cite as

Roberto Di Cosmo, Michael Lienhardt, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Zavattaro, and Jakub Zwolakowski. Automatic Application Deployment in the Cloud: from Practice to Theory and Back (Invited Paper). In 26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{dicosmo_et_al:LIPIcs.CONCUR.2015.1,
  author =	{Di Cosmo, Roberto and Lienhardt, Michael and Mauro, Jacopo and Zacchiroli, Stefano and Zavattaro, Gianluigi and Zwolakowski, Jakub},
  title =	{{Automatic Application Deployment in the Cloud: from Practice to Theory and Back}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{1--16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.1},
  URN =		{urn:nbn:de:0030-drops-53956},
  doi =		{10.4230/LIPIcs.CONCUR.2015.1},
  annote =	{Keywords: Automatic deployment, Planning, DevOps, Constraint Programming}
}
Document
Invited Paper
Reachability Problems for Continuous Linear Dynamical Systems (Invited Paper)

Authors: James Worrell

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
It is well understood that the interaction between discrete and continuous dynamics makes hybrid automata difficult to analyse algorithmically. However it is already the case that many natural verification questions concerning only the continuous dynamics of such systems are extremely challenging. This remains so even for linear dynamical systems, such as linear hybrid automata and continuous-time Markov chains, whose evolution is detemined by linear differential equations. For example, one can ask to decide whether it is possible to escape a particular location of a linear hybrid automaton, given initial values of the continuous variables. Likewise one can ask whether a given set of probability distributions is reachable during the evolution of continuous-time Markov chain. This talk focusses on reachability problems for solutions of linear differential equations. A central decision problem in this area is the Continuous Skolem Problem, which asks whether a real-valued function satisfying an ordinary linear differential equation has a zero. This can be seen as a continuous analog of the Skolem Problem for linear recurrence sequences, which asks whether the sequence satisfying a given recurrence has a zero term. For both the discrete and continuous versions of the Skolem Problem, decidability is open. We show that the Continuous Skolem Problem lies at the heart of many natural verification questions on linear dynamical systems. We describe some recent work, done in collaboration with Chonev and Ouaknine, that uses results in transcendence theory and real algebraic geometry to obtain decidability for certain variants of the problem. In particular, we consider a bounded version of the Continuous Skolem Problem, corresponding to time-bounded reachability. We prove decidability of the bounded problem assuming Schanuel's conjecture, one of the main conjectures in transcendence theory. We describe some partial decidability results in the unbounded case and discuss mathematical obstacles to proving decidability of the Continuous Skolem Problem in full generality.

Cite as

James Worrell. Reachability Problems for Continuous Linear Dynamical Systems (Invited Paper). In 26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, p. 17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{worrell:LIPIcs.CONCUR.2015.17,
  author =	{Worrell, James},
  title =	{{Reachability Problems for Continuous Linear Dynamical Systems}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{17--17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.17},
  URN =		{urn:nbn:de:0030-drops-53960},
  doi =		{10.4230/LIPIcs.CONCUR.2015.17},
  annote =	{Keywords: Linear differential Equations, Hybrid Automata, Schanuel's Conjecture}
}
  • Refine by Author
  • 10 Aceto, Luca
  • 7 Ingólfsdóttir, Anna
  • 3 Achilleos, Antonis
  • 3 Castiglioni, Valentina
  • 3 Francalanza, Adrian
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Equational logic and rewriting
  • 2 Theory of computation → Process calculi
  • 1 Software and its engineering → Dynamic analysis
  • 1 Software and its engineering → Formal software verification
  • 1 Software and its engineering → Software verification
  • Show More...

  • Refine by Keyword
  • 4 Verification
  • 4 bisimulation
  • 3 verification
  • 2 Automata
  • 2 Behavioural equivalences
  • Show More...

  • Refine by Type
  • 50 document
  • 1 volume

  • Refine by Publication Year
  • 41 2015
  • 3 2021
  • 2 2018
  • 2 2020
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail