4 Search Results for "Adamson, Duncan"


Document
k-Universality of Regular Languages

Authors: Duncan Adamson, Pamela Fleischmann, Annika Huch, Tore Koß, Florin Manea, and Dirk Nowotka

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A subsequence of a word w is a word u such that u = w[i₁] w[i₂] … w[i_k], for some set of indices 1 ≤ i₁ < i₂ < … < i_k ≤ |w|. A word w is k-subsequence universal over an alphabet Σ if every word in Σ^k appears in w as a subsequence. In this paper, we study the intersection between the set of k-subsequence universal words over some alphabet Σ and regular languages over Σ. We call a regular language L k-∃-subsequence universal if there exists a k-subsequence universal word in L, and k-∀-subsequence universal if every word of L is k-subsequence universal. We give algorithms solving the problems of deciding if a given regular language, represented by a finite automaton recognising it, is k-∃-subsequence universal and, respectively, if it is k-∀-subsequence universal, for a given k. The algorithms are FPT w.r.t. the size of the input alphabet, and their run-time does not depend on k; they run in polynomial time in the number n of states of the input automaton when the size of the input alphabet is O(log n). Moreover, we show that the problem of deciding if a given regular language is k-∃-subsequence universal is NP-complete, when the language is over a large alphabet. Further, we provide algorithms for counting the number of k-subsequence universal words (paths) accepted by a given deterministic (respectively, nondeterministic) finite automaton, and ranking an input word (path) within the set of k-subsequence universal words accepted by a given finite automaton.

Cite as

Duncan Adamson, Pamela Fleischmann, Annika Huch, Tore Koß, Florin Manea, and Dirk Nowotka. k-Universality of Regular Languages. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.ISAAC.2023.4,
  author =	{Adamson, Duncan and Fleischmann, Pamela and Huch, Annika and Ko{\ss}, Tore and Manea, Florin and Nowotka, Dirk},
  title =	{{k-Universality of Regular Languages}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.4},
  URN =		{urn:nbn:de:0030-drops-193064},
  doi =		{10.4230/LIPIcs.ISAAC.2023.4},
  annote =	{Keywords: String Algorithms, Regular Languages, Finite Automata, Subsequences}
}
Document
The Complexity of Periodic Energy Minimisation

Authors: Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, and Igor Potapov

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The computational complexity of pairwise energy minimisation of N points in real space is a long-standing open problem. The idea of the potential intractability of the problem was supported by a lack of progress in finding efficient algorithms, even when restricted the integer grid approximation. In this paper we provide a firm answer to the problem on ℤ^d by showing that for a large class of pairwise energy functions the problem of periodic energy minimisation is NP-hard if the size of the period (known as a unit cell) is fixed, and is undecidable otherwise. We do so by introducing an abstraction of pairwise average energy minimisation as a mathematical problem, which covers many existing models. The most influential aspects of this work are showing for the first time: 1) undecidability of average pairwise energy minimisation in general 2) computational hardness for the most natural model with periodic boundary conditions, and 3) novel reductions for a large class of generic pairwise energy functions covering many physical abstractions at once. In particular, we develop a new tool of overlapping digital rhombuses to incorporate the properties of the physical force fields, and we connect it with classical tiling problems. Moreover, we illustrate the power of such reductions by incorporating more physical properties such as charge neutrality, and we show an inapproximability result for the extreme case of the 1D average energy minimisation problem.

Cite as

Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, and Igor Potapov. The Complexity of Periodic Energy Minimisation. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.MFCS.2022.8,
  author =	{Adamson, Duncan and Deligkas, Argyrios and Gusev, Vladimir V. and Potapov, Igor},
  title =	{{The Complexity of Periodic Energy Minimisation}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{8:1--8:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.8},
  URN =		{urn:nbn:de:0030-drops-168065},
  doi =		{10.4230/LIPIcs.MFCS.2022.8},
  annote =	{Keywords: Optimisation of periodic structures, tiling, undecidability, NP-hardness}
}
Document
Faster Exploration of Some Temporal Graphs

Authors: Duncan Adamson, Vladimir V. Gusev, Dmitriy Malyshev, and Viktor Zamaraev

Published in: LIPIcs, Volume 221, 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)


Abstract
A temporal graph G = (G_1, G_2, ..., G_T) is a graph represented by a sequence of T graphs over a common set of vertices, such that at the i-th time step only the edge set E_i is active. The temporal graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every vertex. We show that temporal graphs with n vertices can be explored in O(k n^{1.5} log n) days if the underlying graph has treewidth k and in O(n^{1.75} log n) days if the underlying graph is planar. Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of sub cubic planar graphs that cannot be explored faster than in Ω(n log n) days. All these improve best known results in the literature.

Cite as

Duncan Adamson, Vladimir V. Gusev, Dmitriy Malyshev, and Viktor Zamaraev. Faster Exploration of Some Temporal Graphs. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 221, pp. 5:1-5:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.SAND.2022.5,
  author =	{Adamson, Duncan and Gusev, Vladimir V. and Malyshev, Dmitriy and Zamaraev, Viktor},
  title =	{{Faster Exploration of Some Temporal Graphs}},
  booktitle =	{1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)},
  pages =	{5:1--5:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-224-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{221},
  editor =	{Aspnes, James and Michail, Othon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2022.5},
  URN =		{urn:nbn:de:0030-drops-159475},
  doi =		{10.4230/LIPIcs.SAND.2022.5},
  annote =	{Keywords: Temporal Graphs, Graph Exploration}
}
Document
Ranking Bracelets in Polynomial Time

Authors: Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
The main result of the paper is the first polynomial-time algorithm for ranking bracelets. The time-complexity of the algorithm is O(k²⋅ n⁴), where k is the size of the alphabet and n is the length of the considered bracelets. The key part of the algorithm is to compute the rank of any word with respect to the set of bracelets by finding three other ranks: the rank over all necklaces, the rank over palindromic necklaces, and the rank over enclosing apalindromic necklaces. The last two concepts are introduced in this paper. These ranks are key components to our algorithm in order to decompose the problem into parts. Additionally, this ranking procedure is used to build a polynomial-time unranking algorithm.

Cite as

Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas. Ranking Bracelets in Polynomial Time. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 4:1-4:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.CPM.2021.4,
  author =	{Adamson, Duncan and Gusev, Vladimir V. and Potapov, Igor and Deligkas, Argyrios},
  title =	{{Ranking Bracelets in Polynomial Time}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{4:1--4:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.4},
  URN =		{urn:nbn:de:0030-drops-139554},
  doi =		{10.4230/LIPIcs.CPM.2021.4},
  annote =	{Keywords: Bracelets, Ranking, Necklaces}
}
  • Refine by Author
  • 4 Adamson, Duncan
  • 3 Gusev, Vladimir V.
  • 2 Deligkas, Argyrios
  • 2 Potapov, Igor
  • 1 Fleischmann, Pamela
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics on words
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Theory of computation → Formal languages and automata theory
  • 1 Theory of computation → Problems, reductions and completeness

  • Refine by Keyword
  • 1 Bracelets
  • 1 Finite Automata
  • 1 Graph Exploration
  • 1 NP-hardness
  • 1 Necklaces
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2022
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail