1 Search Results for "Baez, Victor M."


Document
Media Exposition
Coordinated Particle Relocation with Global Signals and Local Friction (Media Exposition)

Authors: Victor M. Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we present theoretical and practical methods for achieving arbitrary reconfiguration of a set of objects, based on the use of external forces, such as a magnetic field or gravity: Upon actuation, each object is pushed in the same direction. This concept can be used for a wide range of applications in which particles do not have their own energy supply or in which they are subject to the same global control commands. A crucial challenge for achieving any desired target configuration is breaking global symmetry in a controlled fashion. Previous work (some of which was presented during SoCG 2015) made use of specifically placed barriers; however, introducing precisely located obstacles into the workspace is impractical for many scenarios. In this paper, we present a different, less intrusive method: making use of the interplay between static friction with a boundary and the external force to achieve arbitrary reconfiguration. Our key contributions are theoretical characterizations of the critical coefficient of friction that is sufficient for rearranging two particles in triangles, convex polygons, and regular polygons; a method for reconfiguring multiple particles in rectangular workspaces, and deriving practical algorithms for these rearrangements. Hardware experiments show the efficacy of these procedures, demonstrating the usefulness of this novel approach.

Cite as

Victor M. Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt. Coordinated Particle Relocation with Global Signals and Local Friction (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 72:1-72:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baez_et_al:LIPIcs.SoCG.2020.72,
  author =	{Baez, Victor M. and Becker, Aaron T. and Fekete, S\'{a}ndor P. and Schmidt, Arne},
  title =	{{Coordinated Particle Relocation with Global Signals and Local Friction}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{72:1--72:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.72},
  URN =		{urn:nbn:de:0030-drops-122305},
  doi =		{10.4230/LIPIcs.SoCG.2020.72},
  annote =	{Keywords: Global control, reconfiguration, geometric algorithms, friction}
}
  • Refine by Author
  • 1 Baez, Victor M.
  • 1 Becker, Aaron T.
  • 1 Fekete, Sándor P.
  • 1 Schmidt, Arne

  • Refine by Classification
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 1 Global control
  • 1 friction
  • 1 geometric algorithms
  • 1 reconfiguration

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail