207 Search Results for "Baier, Christel"


Volume

LIPIcs, Volume 183

29th EACSL Annual Conference on Computer Science Logic (CSL 2021)

CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference)

Editors: Christel Baier and Jean Goubault-Larrecq

Volume

LIPIcs, Volume 132

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

ICALP 2019, July 9-12, 2019, Patras, Greece

Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi

Document
Entropic Risk for Turn-Based Stochastic Games

Authors: Christel Baier, Krishnendu Chatterjee, Tobias Meggendorfer, and Jakob Piribauer

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture. If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers, leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further restrictions on the encoding of the input allow the solution of the threshold problem in NP∩coNP. Finally, an approximation algorithm for the optimal value of ERisk is provided.

Cite as

Christel Baier, Krishnendu Chatterjee, Tobias Meggendorfer, and Jakob Piribauer. Entropic Risk for Turn-Based Stochastic Games. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.MFCS.2023.15,
  author =	{Baier, Christel and Chatterjee, Krishnendu and Meggendorfer, Tobias and Piribauer, Jakob},
  title =	{{Entropic Risk for Turn-Based Stochastic Games}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.15},
  URN =		{urn:nbn:de:0030-drops-185491},
  doi =		{10.4230/LIPIcs.MFCS.2023.15},
  annote =	{Keywords: Stochastic games, risk-aware verification}
}
Document
Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the model-checking problem for parametric probabilistic dynamical systems, formalised as Markov chains with parametric transition functions, analysed under the distribution-transformer semantics (in which a Markov chain induces a sequence of distributions over states). We examine the problem of synthesising the set of parameter valuations of a parametric Markov chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular property. Our main result establishes that in all non-degenerate instances, the feasible set of parameters is (up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2022.10,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10},
  URN =		{urn:nbn:de:0030-drops-170732},
  doi =		{10.4230/LIPIcs.CONCUR.2022.10},
  annote =	{Keywords: Model checking, parametric Markov chains, distribution transformer semantics}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Variance-Penalized Stochastic Shortest Path Problem

Authors: Jakob Piribauer, Ocan Sankur, and Christel Baier

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The stochastic shortest path problem (SSPP) asks to resolve the non-deterministic choices in a Markov decision process (MDP) such that the expected accumulated weight before reaching a target state is maximized. This paper addresses the optimization of the variance-penalized expectation (VPE) of the accumulated weight, which is a variant of the SSPP in which a multiple of the variance of accumulated weights is incurred as a penalty. It is shown that the optimal VPE in MDPs with non-negative weights as well as an optimal deterministic finite-memory scheduler can be computed in exponential space. The threshold problem whether the maximal VPE exceeds a given rational is shown to be EXPTIME-hard and to lie in NEXPTIME. Furthermore, a result of interest in its own right obtained on the way is that a variance-minimal scheduler among all expectation-optimal schedulers can be computed in polynomial time.

Cite as

Jakob Piribauer, Ocan Sankur, and Christel Baier. The Variance-Penalized Stochastic Shortest Path Problem. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 129:1-129:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{piribauer_et_al:LIPIcs.ICALP.2022.129,
  author =	{Piribauer, Jakob and Sankur, Ocan and Baier, Christel},
  title =	{{The Variance-Penalized Stochastic Shortest Path Problem}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{129:1--129:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.129},
  URN =		{urn:nbn:de:0030-drops-164705},
  doi =		{10.4230/LIPIcs.ICALP.2022.129},
  annote =	{Keywords: Markov decision process, variance, stochastic shortest path problem}
}
Document
Quantified Linear Temporal Logic over Probabilistic Systems with an Application to Vacuity Checking

Authors: Jakob Piribauer, Christel Baier, Nathalie Bertrand, and Ocan Sankur

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
Quantified linear temporal logic (QLTL) is an ω-regular extension of LTL allowing quantification over propositional variables. We study the model checking problem of QLTL-formulas over Markov chains and Markov decision processes (MDPs) with respect to the number of quantifier alternations of formulas in prenex normal form. For formulas with k{-}1 quantifier alternations, we prove that all qualitative and quantitative model checking problems are k-EXPSPACE-complete over Markov chains and k{+}1-EXPTIME-complete over MDPs. As an application of these results, we generalize vacuity checking for LTL specifications from the non-probabilistic to the probabilistic setting. We show how to check whether an LTL-formula is affected by a subformula, and also study inherent vacuity for probabilistic systems.

Cite as

Jakob Piribauer, Christel Baier, Nathalie Bertrand, and Ocan Sankur. Quantified Linear Temporal Logic over Probabilistic Systems with an Application to Vacuity Checking. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{piribauer_et_al:LIPIcs.CONCUR.2021.7,
  author =	{Piribauer, Jakob and Baier, Christel and Bertrand, Nathalie and Sankur, Ocan},
  title =	{{Quantified Linear Temporal Logic over Probabilistic Systems with an Application to Vacuity Checking}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.7},
  URN =		{urn:nbn:de:0030-drops-143842},
  doi =		{10.4230/LIPIcs.CONCUR.2021.7},
  annote =	{Keywords: Quantified linear temporal logic, Markov chain, Markov decision process, vacuity}
}
Document
The Orbit Problem for Parametric Linear Dynamical Systems

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The Orbit Problem for Parametric Linear Dynamical Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2021.28,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Luca, Florian and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{The Orbit Problem for Parametric Linear Dynamical Systems}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.28},
  URN =		{urn:nbn:de:0030-drops-144053},
  doi =		{10.4230/LIPIcs.CONCUR.2021.28},
  annote =	{Keywords: Orbit problem, parametric, linear dynamical systems}
}
Document
Invited Talk
From Verification to Causality-Based Explications (Invited Talk)

Authors: Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin Ziemek

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In view of the growing complexity of modern software architectures, formal models are increasingly used to understand why a system works the way it does, opposed to simply verifying that it behaves as intended. This paper surveys approaches to formally explicate the observable behavior of reactive systems. We describe how Halpern and Pearl’s notion of actual causation inspired verification-oriented studies of cause-effect relationships in the evolution of a system. A second focus lies on applications of the Shapley value to responsibility ascriptions, aimed to measure the influence of an event on an observable effect. Finally, formal approaches to probabilistic causation are collected and connected, and their relevance to the understanding of probabilistic systems is discussed.

Cite as

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin Ziemek. From Verification to Causality-Based Explications (Invited Talk). In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.ICALP.2021.1,
  author =	{Baier, Christel and Dubslaff, Clemens and Funke, Florian and Jantsch, Simon and Majumdar, Rupak and Piribauer, Jakob and Ziemek, Robin},
  title =	{{From Verification to Causality-Based Explications}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.1},
  URN =		{urn:nbn:de:0030-drops-140709},
  doi =		{10.4230/LIPIcs.ICALP.2021.1},
  annote =	{Keywords: Model Checking, Causality, Responsibility, Counterfactuals, Shapley value}
}
Document
Complete Volume
LIPIcs, Volume 183, CSL 2021, Complete Volume

Authors: Christel Baier and Jean Goubault-Larrecq

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
LIPIcs, Volume 183, CSL 2021, Complete Volume

Cite as

29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 1-734, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{baier_et_al:LIPIcs.CSL.2021,
  title =	{{LIPIcs, Volume 183, CSL 2021, Complete Volume}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{1--734},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021},
  URN =		{urn:nbn:de:0030-drops-134339},
  doi =		{10.4230/LIPIcs.CSL.2021},
  annote =	{Keywords: LIPIcs, Volume 183, CSL 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Christel Baier and Jean Goubault-Larrecq

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CSL.2021.0,
  author =	{Baier, Christel and Goubault-Larrecq, Jean},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.0},
  URN =		{urn:nbn:de:0030-drops-134348},
  doi =		{10.4230/LIPIcs.CSL.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
μ-Calculi with Atoms (Invited Talk)

Authors: Bartek Klin

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Modal μ-calculus is a well-known formalism for describing properties of state-based transition systems. It can define properties such as "[in the current state] p holds, and there is a path where is holds again at some point in the future", where p comes from some fixed vocabulary of basic predicates. A formula of the classical μ-calculus refers only to finitely many basic predicates, which may sometimes seem restrictive. Real systems routinely operate on data coming from potentially infinite domains, such as numbers or character strings. Basic properties of such systems may reasonably include ones like "the number n was input", for every number n. It is then not clear how to say that "there exists a transition path where the currently input number is input again some time in the future" as a formula. Various modal formalisms have been proposed to model temporal properties of systems that refer to data coming from infinite domains. Here I focus on the modal μ-calculus with atoms, which is an extension of the classical calculus with features of nominal sets. There, basic predicates, formulas and models rely on atoms that come from some fixed infinite domain and can be tested for equality (or, in an extended variant, for some fixed order). I present a few variants of the modal μ-calculus with atoms, and describe their properties. As an example application, I show how to formulate the security property of the cryptographic Needham-Schroeder protocol, which relies on generating atomic nonces and comparing them for equality, and which famously fails due to a man-in-the-middle attack. Much of the material presented in this talk is drawn from [C. Eberhart and B. Klin, 2019; B. Klin and M. Łełyk, 2019; B. Klin and M. Łełyk, 2017].

Cite as

Bartek Klin. μ-Calculi with Atoms (Invited Talk). In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{klin:LIPIcs.CSL.2021.1,
  author =	{Klin, Bartek},
  title =	{{\mu-Calculi with Atoms}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.1},
  URN =		{urn:nbn:de:0030-drops-134358},
  doi =		{10.4230/LIPIcs.CSL.2021.1},
  annote =	{Keywords: modal \mu-calculus, sets with atoms}
}
Document
Invited Talk
Mathematical Structures in Dependent Type Theory (Invited Talk)

Authors: Assia Mahboubi

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
In this talk, we discuss the role and the implementation of mathematical structures in libraries of formalised mathematics in dependent type theory.

Cite as

Assia Mahboubi. Mathematical Structures in Dependent Type Theory (Invited Talk). In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 2:1-2:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mahboubi:LIPIcs.CSL.2021.2,
  author =	{Mahboubi, Assia},
  title =	{{Mathematical Structures in Dependent Type Theory}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{2:1--2:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.2},
  URN =		{urn:nbn:de:0030-drops-134361},
  doi =		{10.4230/LIPIcs.CSL.2021.2},
  annote =	{Keywords: Mathematical structures, formalized mathematics, dependent type theory}
}
Document
Invited Talk
Branching in Well-Structured Transition Systems (Invited Talk)

Authors: Sylvain Schmitz

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
The framework of well-structured transition systems has been highly successful in providing generic algorithms to show the decidability of verification problems for infinite-state systems. In some of these applications, the executions in the system at hand are actually trees, and need to be "lifted" to executions over sets of configurations in order to fit in the framework. The downside of this approach is that we might lose precision when analysing the computational complexity of the algorithms, compared to reasoning over branching executions.

Cite as

Sylvain Schmitz. Branching in Well-Structured Transition Systems (Invited Talk). In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{schmitz:LIPIcs.CSL.2021.3,
  author =	{Schmitz, Sylvain},
  title =	{{Branching in Well-Structured Transition Systems}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.3},
  URN =		{urn:nbn:de:0030-drops-134377},
  doi =		{10.4230/LIPIcs.CSL.2021.3},
  annote =	{Keywords: fast-growing complexity, well-structured transition system}
}
Document
Invited Talk
Borel Sets in Reverse Mathematics (Invited Talk)

Authors: Linda Westrick

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
We present what is known about the reverse mathematical strength of weak theorems involving Borel sets.

Cite as

Linda Westrick. Borel Sets in Reverse Mathematics (Invited Talk). In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{westrick:LIPIcs.CSL.2021.4,
  author =	{Westrick, Linda},
  title =	{{Borel Sets in Reverse Mathematics}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{4:1--4:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.4},
  URN =		{urn:nbn:de:0030-drops-134387},
  doi =		{10.4230/LIPIcs.CSL.2021.4},
  annote =	{Keywords: Borel sets, reverse mathematics, measure, category}
}
Document
The Logic of Contextuality

Authors: Samson Abramsky and Rui Soares Barbosa

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Contextuality is a key signature of quantum non-classicality, which has been shown to play a central role in enabling quantum advantage for a wide range of information-processing and computational tasks. We study the logic of contextuality from a structural point of view, in the setting of partial Boolean algebras introduced by Kochen and Specker in their seminal work. These contrast with traditional quantum logic à la Birkhoff and von Neumann in that operations such as conjunction and disjunction are partial, only being defined in the domain where they are physically meaningful. We study how this setting relates to current work on contextuality such as the sheaf-theoretic and graph-theoretic approaches. We introduce a general free construction extending the commeasurability relation on a partial Boolean algebra, i.e. the domain of definition of the binary logical operations. This construction has a surprisingly broad range of uses. We apply it in the study of a number of issues, including: - establishing the connection between the abstract measurement scenarios studied in the contextuality literature and the setting of partial Boolean algebras; - formulating various contextuality properties in this setting, including probabilistic contextuality as well as the strong, state-independent notion of contextuality given by Kochen-Specker paradoxes, which are logically contradictory statements validated by partial Boolean algebras, specifically those arising from quantum mechanics; - investigating a Logical Exclusivity Principle, and its relation to the Probabilistic Exclusivity Principle widely studied in recent work on contextuality as a step towards closing in on the set of quantum-realisable correlations; - developing some work towards a logical presentation of the Hilbert space tensor product, using logical exclusivity to capture some of its salient quantum features.

Cite as

Samson Abramsky and Rui Soares Barbosa. The Logic of Contextuality. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.CSL.2021.5,
  author =	{Abramsky, Samson and Barbosa, Rui Soares},
  title =	{{The Logic of Contextuality}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.5},
  URN =		{urn:nbn:de:0030-drops-134394},
  doi =		{10.4230/LIPIcs.CSL.2021.5},
  annote =	{Keywords: partial Boolean algebras, contextuality, exclusivity principles, Kochen-Specker paradoxes, tensor product}
}
  • Refine by Author
  • 16 Baier, Christel
  • 5 Ouaknine, Joël
  • 5 Piribauer, Jakob
  • 4 Funke, Florian
  • 4 Jantsch, Simon
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Logic and verification
  • 11 Theory of computation → Graph algorithms analysis
  • 10 Theory of computation → Approximation algorithms analysis
  • 10 Theory of computation → Design and analysis of algorithms
  • 10 Theory of computation → Formal languages and automata theory
  • Show More...

  • Refine by Keyword
  • 9 approximation algorithms
  • 5 fine-grained complexity
  • 5 lower bounds
  • 4 graph algorithms
  • 3 Automata
  • Show More...

  • Refine by Type
  • 205 document
  • 2 volume

  • Refine by Publication Year
  • 154 2019
  • 44 2021
  • 2 2010
  • 2 2020
  • 2 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail