2 Search Results for "Berglin, Edvin"


Document
A Simple Greedy Algorithm for Dynamic Graph Orientation

Authors: Edvin Berglin and Gerth Stølting Brodal

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
Graph orientations with low out-degree are one of several ways to efficiently store sparse graphs. If the graphs allow for insertion and deletion of edges, one may have to flip the orientation of some edges to prevent blowing up the maximum out-degree. We use arboricity as our sparsity measure. With an immensely simple greedy algorithm, we get parametrized trade-off bounds between out-degree and worst case number of flips, which previously only existed for amortized number of flips. We match the previous best worst-case algorithm (in O(log n) flips) for general arboricity and beat it for either constant or super-logarithmic arboricity. We also match a previous best amortized result for at least logarithmic arboricity, and give the first results with worst-case O(1) and O(sqrt(log n)) flips nearly matching degree bounds to their respective amortized solutions.

Cite as

Edvin Berglin and Gerth Stølting Brodal. A Simple Greedy Algorithm for Dynamic Graph Orientation. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{berglin_et_al:LIPIcs.ISAAC.2017.12,
  author =	{Berglin, Edvin and St{\o}lting Brodal, Gerth},
  title =	{{A Simple Greedy Algorithm for Dynamic Graph Orientation}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{12:1--12:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.12},
  URN =		{urn:nbn:de:0030-drops-82637},
  doi =		{10.4230/LIPIcs.ISAAC.2017.12},
  annote =	{Keywords: Dynamic graph algorithms, graph arboricity, edge orientations}
}
Document
Applications of Incidence Bounds in Point Covering Problems

Authors: Peyman Afshani, Edvin Berglin, Ingo van Duijn, and Jesper Sindahl Nielsen

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
In the Line Cover problem a set of n points is given and the task is to cover the points using either the minimum number of lines or at most k lines. In Curve Cover, a generalization of Line Cover, the task is to cover the points using curves with d degrees of freedom. Another generalization is the Hyperplane Cover problem where points in d-dimensional space are to be covered by hyperplanes. All these problems have kernels of polynomial size, where the parameter is the minimum number of lines, curves, or hyperplanes needed. First we give a non-parameterized algorithm for both problems in O*(2^n) (where the O*(.) notation hides polynomial factors of n) time and polynomial space, beating a previous exponential-space result. Combining this with incidence bounds similar to the famous Szemeredi-Trotter bound, we present a Curve Cover algorithm with running time O*((Ck/log k)^((d-1)k)), where C is some constant. Our result improves the previous best times O*((k/1.35)^k) for Line Cover (where d=2), O*(k^(dk)) for general Curve Cover, as well as a few other bounds for covering points by parabolas or conics. We also present an algorithm for Hyperplane Cover in R^3 with running time O*((Ck^2/log^(1/5) k)^k), improving on the previous time of O*((k^2/1.3)^k).

Cite as

Peyman Afshani, Edvin Berglin, Ingo van Duijn, and Jesper Sindahl Nielsen. Applications of Incidence Bounds in Point Covering Problems. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 60:1-60:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2016.60,
  author =	{Afshani, Peyman and Berglin, Edvin and van Duijn, Ingo and Sindahl Nielsen, Jesper},
  title =	{{Applications of Incidence Bounds in Point Covering Problems}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{60:1--60:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.60},
  URN =		{urn:nbn:de:0030-drops-59527},
  doi =		{10.4230/LIPIcs.SoCG.2016.60},
  annote =	{Keywords: Point Cover, Incidence Bounds, Inclusion Exclusion, Exponential Algorithm}
}
  • Refine by Author
  • 2 Berglin, Edvin
  • 1 Afshani, Peyman
  • 1 Sindahl Nielsen, Jesper
  • 1 Stølting Brodal, Gerth
  • 1 van Duijn, Ingo

  • Refine by Classification

  • Refine by Keyword
  • 1 Dynamic graph algorithms
  • 1 Exponential Algorithm
  • 1 Incidence Bounds
  • 1 Inclusion Exclusion
  • 1 Point Cover
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail