2 Search Results for "Bergold, Helena"


Document
An Extension Theorem for Signotopes

Authors: Helena Bergold, Stefan Felsner, and Manfred Scheucher

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
In 1926, Levi showed that, for every pseudoline arrangement 𝒜 and two points in the plane, 𝒜 can be extended by a pseudoline which contains the two prescribed points. Later extendability was studied for arrangements of pseudohyperplanes in higher dimensions. While the extendability of an arrangement of proper hyperplanes in ℝ^d with a hyperplane containing d prescribed points is trivial, Richter-Gebert found an arrangement of pseudoplanes in ℝ³ which cannot be extended with a pseudoplane containing two particular prescribed points. In this article, we investigate the extendability of signotopes, which are a combinatorial structure encoding a rich subclass of pseudohyperplane arrangements. Our main result is that signotopes of odd rank are extendable in the sense that for two prescribed crossing points we can add an element containing them. Moreover, we conjecture that in all even ranks r ≥ 4 there exist signotopes which are not extendable for two prescribed points. Our conjecture is supported by examples in ranks 4, 6, 8, 10, and 12 that were found with a SAT based approach.

Cite as

Helena Bergold, Stefan Felsner, and Manfred Scheucher. An Extension Theorem for Signotopes. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.SoCG.2023.17,
  author =	{Bergold, Helena and Felsner, Stefan and Scheucher, Manfred},
  title =	{{An Extension Theorem for Signotopes}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.17},
  URN =		{urn:nbn:de:0030-drops-178676},
  doi =		{10.4230/LIPIcs.SoCG.2023.17},
  annote =	{Keywords: arrangement of pseudolines, extendability, Levi’s extension lemma, arrangement of pseudohyperplanes, signotope, oriented matroid, partial order, Boolean satisfiability (SAT)}
}
Document
Well-Separation and Hyperplane Transversals in High Dimensions

Authors: Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how hard is it to check if a given family of high-dimensional point sets has this property? Starting from this question, we study several algorithmic aspects of the existence of transversals and separations in high-dimensions. First, we give an explicit proof that k point sets are well-separated if and only if their convex hulls admit no (k - 2)-transversal, i.e., if there exists no (k - 2)-dimensional flat that intersects the convex hulls of all k sets. It follows that the task of checking well-separation lies in the complexity class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal (that is, a (d - 1)-transversal) of a family of d + 1 line segments in ℝ^d, where d is part of the input. As a consequence, it follows that the general problem of testing well-separation is coNP-complete. Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets is NP-hard, but allows for an Ω((log k)/(k log log k))-approximation algorithm that is polynomial in d and k, when each set consists of a single point. When all point sets are finite, we show that checking whether there exists a (k - 2)-transversal is in fact strongly NP-complete. Finally, we take the viewpoint of parametrized complexity, using the dimension d as a parameter: given k convex sets in ℝ^d, checking whether there is a (k-2)-transversal is FPT with respect to d. On the other hand, for k ≥ d+1 finite point sets in ℝ^d, it turns out that checking whether there is a (d-1)-transversal is W[1]-hard with respect to d.

Cite as

Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider. Well-Separation and Hyperplane Transversals in High Dimensions. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.SWAT.2022.16,
  author =	{Bergold, Helena and Bertschinger, Daniel and Grelier, Nicolas and Mulzer, Wolfgang and Schnider, Patrick},
  title =	{{Well-Separation and Hyperplane Transversals in High Dimensions}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.16},
  URN =		{urn:nbn:de:0030-drops-161766},
  doi =		{10.4230/LIPIcs.SWAT.2022.16},
  annote =	{Keywords: hyperplane transversal, high-dimension, hardness}
}
  • Refine by Author
  • 2 Bergold, Helena
  • 1 Bertschinger, Daniel
  • 1 Felsner, Stefan
  • 1 Grelier, Nicolas
  • 1 Mulzer, Wolfgang
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Computational geometry
  • 1 Hardware → Theorem proving and SAT solving
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Mathematics of computing → Enumeration
  • 1 Mathematics of computing → Solvers
  • Show More...

  • Refine by Keyword
  • 1 Boolean satisfiability (SAT)
  • 1 Levi’s extension lemma
  • 1 arrangement of pseudohyperplanes
  • 1 arrangement of pseudolines
  • 1 extendability
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail