2 Search Results for "Biswas, Sudip"


Document
Forbidden Extension Queries

Authors: Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan

Published in: LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)


Abstract
Document retrieval is one of the most fundamental problem in information retrieval. The objective is to retrieve all documents from a document collection that are relevant to an input pattern. Several variations of this problem such as ranked document retrieval, document listing with two patterns and forbidden patterns have been studied. We introduce the problem of document retrieval with forbidden extensions. Let D={T_1,T_2,...,T_D} be a collection of D string documents of n characters in total, and P^+ and P^- be two query patterns, where P^+ is a proper prefix of P^-. We call P^- as the forbidden extension of the included pattern P^+. A forbidden extension query < P^+,P^- > asks to report all occ documents in D that contains P^+ as a substring, but does not contain P^- as one. A top-k forbidden extension query < P^+,P^-,k > asks to report those k documents among the occ documents that are most relevant to P^+. We present a linear index (in words) with an O(|P^-| + occ) query time for the document listing problem. For the top-k version of the problem, we achieve the following results, when the relevance of a document is based on PageRank: - an O(n) space (in words) index with O(|P^-|log sigma+ k) query time, where sigma is the size of the alphabet from which characters in D are chosen. For constant alphabets, this yields an optimal query time of O(|P^-|+ k). - for any constant epsilon > 0, a |CSA| + |CSA^*| + Dlog frac{n}{D} + O(n) bits index with O(search(P)+ k cdot tsa cdot log ^{2+epsilon} n) query time, where search(P) is the time to find the suffix range of a pattern P, tsa is the time to find suffix (or inverse suffix) array value, and |CSA^*| denotes the maximum of the space needed to store the compressed suffix array CSA of the concatenated text of all documents, or the total space needed to store the individual CSA of each document.

Cite as

Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Forbidden Extension Queries. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 320-335, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.FSTTCS.2015.320,
  author =	{Biswas, Sudip and Ganguly, Arnab and Shah, Rahul and Thankachan, Sharma V.},
  title =	{{Forbidden Extension Queries}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{320--335},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Harsha, Prahladh and Ramalingam, G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.320},
  URN =		{urn:nbn:de:0030-drops-56522},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.320},
  annote =	{Keywords: document retrieval, suffix trees, range queries, succinct data structure}
}
Document
Shared-Constraint Range Reporting

Authors: Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan

Published in: LIPIcs, Volume 31, 18th International Conference on Database Theory (ICDT 2015)


Abstract
Orthogonal range reporting is one of the classic and most fundamental data structure problems. (2,1,1) query is a 3 dimensional query with two-sided constraint on the first dimension and one sided constraint on each of the 2nd and 3rd dimension. Given a set of N points in three dimension, a particular formulation of such a (2,1,1) query (known as four-sided range reporting in three-dimension) asks to report all those K points within a query region [a, b]X(-infinity, c]X[d, infinity). These queries have overall 4 constraints. In Word-RAM model, the best known structure capable of answering such queries with optimal query time takes O(N log^{epsilon} N) space, where epsilon>0 is any positive constant. It has been shown that any external memory structure in optimal I/Os must use Omega(N log N/ log log_B N) space (in words), where B is the block size [Arge et al., PODS 1999]. In this paper, we study a special type of (2,1,1) queries, where the query parameters a and c are the same i.e., a=c. Even though the query is still four-sided, the number of independent constraints is only three. In other words, one constraint is shared. We call this as a Shared-Constraint Range Reporting (SCRR) problem. We study this problem in both internal as well as external memory models. In RAM model where coordinates can only be compared, we achieve linear-space and O(log N+K) query time solution, matching the best-known three dimensional dominance query bound. Whereas in external memory, we present a linear space structure with O(log_B N + log log N + K/B) query I/Os. We also present an I/O-optimal (i.e., O(log_B N+K/B) I/Os) data structure which occupies O(N log log N)-word space. We achieve these results by employing a novel divide and conquer approach. SCRR finds application in database queries containing sharing among the constraints. We also show that SCRR queries naturally arise in many well known problems such as top-k color reporting, range skyline reporting and ranked document retrieval.

Cite as

Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan. Shared-Constraint Range Reporting. In 18th International Conference on Database Theory (ICDT 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 31, pp. 277-290, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.ICDT.2015.277,
  author =	{Biswas, Sudip and Patil, Manish and Shah, Rahul and Thankachan, Sharma V.},
  title =	{{Shared-Constraint Range Reporting}},
  booktitle =	{18th International Conference on Database Theory (ICDT 2015)},
  pages =	{277--290},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-79-8},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{31},
  editor =	{Arenas, Marcelo and Ugarte, Mart{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2015.277},
  URN =		{urn:nbn:de:0030-drops-49900},
  doi =		{10.4230/LIPIcs.ICDT.2015.277},
  annote =	{Keywords: data structure, shared constraint, multi-slab, point partitioning}
}
  • Refine by Author
  • 2 Biswas, Sudip
  • 2 Shah, Rahul
  • 2 Thankachan, Sharma V.
  • 1 Ganguly, Arnab
  • 1 Patil, Manish

  • Refine by Classification

  • Refine by Keyword
  • 1 data structure
  • 1 document retrieval
  • 1 multi-slab
  • 1 point partitioning
  • 1 range queries
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2015

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail