4 Search Results for "Bit-Monnot, Arthur"


Document
Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

Authors: Dieter van Melkebeek and Nicollas Mocelin Sdroievski

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
A fundamental question in computational complexity asks whether probabilistic polynomial-time algorithms can be simulated deterministically with a small overhead in time (the BPP vs. P problem). A corresponding question in the realm of interactive proofs asks whether Arthur-Merlin protocols can be simulated nondeterministically with a small overhead in time (the AM vs. NP problem). Both questions are intricately tied to lower bounds. Prominently, in both settings blackbox derandomization, i.e., derandomization through pseudo-random generators, has been shown equivalent to lower bounds for decision problems against circuits. Recently, Chen and Tell (FOCS'21) established near-equivalences in the BPP setting between whitebox derandomization and lower bounds for multi-bit functions against algorithms on almost-all inputs. The key ingredient is a technique to translate hardness into targeted hitting sets in an instance-wise fashion based on a layered arithmetization of the evaluation of a uniform circuit computing the hard function f on the given instance. In this paper we develop a corresponding technique for Arthur-Merlin protocols and establish similar near-equivalences in the AM setting. As an example of our results in the hardness to derandomization direction, consider a length-preserving function f computable by a nondeterministic algorithm that runs in time n^a. We show that if every Arthur-Merlin protocol that runs in time n^c for c = O(log² a) can only compute f correctly on finitely many inputs, then AM is in NP. Our main technical contribution is the construction of suitable targeted hitting-set generators based on probabilistically checkable proofs for nondeterministic computations. As a byproduct of our constructions, we obtain the first result indicating that whitebox derandomization of AM may be equivalent to the existence of targeted hitting-set generators for AM, an issue raised by Goldreich (LNCS, 2011). Byproducts in the average-case setting include the first uniform hardness vs. randomness tradeoffs for AM, as well as an unconditional mild derandomization result for AM.

Cite as

Dieter van Melkebeek and Nicollas Mocelin Sdroievski. Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 17:1-17:36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vanmelkebeek_et_al:LIPIcs.CCC.2023.17,
  author =	{van Melkebeek, Dieter and Mocelin Sdroievski, Nicollas},
  title =	{{Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{17:1--17:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.17},
  URN =		{urn:nbn:de:0030-drops-182870},
  doi =		{10.4230/LIPIcs.CCC.2023.17},
  annote =	{Keywords: Hardness versus randomness tradeoff, Arthur-Merlin protocol, targeted hitting set generator}
}
Document
Rigidity for Monogamy-Of-Entanglement Games

Authors: Anne Broadbent and Eric Culf

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In a monogamy-of-entanglement (MoE) game, two players who do not communicate try to simultaneously guess a referee’s measurement outcome on a shared quantum state they prepared. We study the prototypical example of a game where the referee measures in either the computational or Hadamard basis and informs the players of her choice. We show that this game satisfies a rigidity property similar to what is known for some nonlocal games. That is, in order to win optimally, the players' strategy must be of a specific form, namely a convex combination of four unentangled optimal strategies generated by the Breidbart state. We extend this to show that strategies that win near-optimally must also be near an optimal state of this form. We also show rigidity for multiple copies of the game played in parallel. We give three applications: (1) We construct for the first time a weak string erasure (WSE) scheme where the security does not rely on limitations on the parties' hardware. Instead, we add a prover, which enables security via the rigidity of this MoE game. (2) We show that the WSE scheme can be used to achieve bit commitment in a model where it is impossible classically. (3) We achieve everlasting-secure randomness expansion in the model of trusted but leaky measurement and untrusted preparation and measurements by two isolated devices, while relying only on the temporary assumption of pseudorandom functions. This achieves randomness expansion without the need for shared entanglement.

Cite as

Anne Broadbent and Eric Culf. Rigidity for Monogamy-Of-Entanglement Games. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 28:1-28:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{broadbent_et_al:LIPIcs.ITCS.2023.28,
  author =	{Broadbent, Anne and Culf, Eric},
  title =	{{Rigidity for Monogamy-Of-Entanglement Games}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{28:1--28:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.28},
  URN =		{urn:nbn:de:0030-drops-175319},
  doi =		{10.4230/LIPIcs.ITCS.2023.28},
  annote =	{Keywords: Rigidity, Self-Testing Monogamy-of-Entanglement Games, Bit Commitment, Randomness Expansion}
}
Document
Carpooling: the 2 Synchronization Points Shortest Paths Problem

Authors: Arthur Bit-Monnot, Christian Artigues, Marie-José Huguet, and Marc-Olivier Killijian

Published in: OASIcs, Volume 33, 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2013)


Abstract
Carpooling is an appropriate solution to address traffic congestion and to reduce the ecological footprint of the car use. In this paper, we address an essential problem for providing dynamic carpooling: how to compute the shortest driver's and passenger's paths. Indeed, those two paths are synchronized in the sense that they have a common subpath between two points: the location where the passenger is picked up and the one where he is dropped off the car. The passenger path may include time-dependent public transportation parts before or after the common subpath. This defines the 2 Synchronization Points Shortest Path Problem (2SPSPP). We show that the 2SPSPP has a polynomial worst-case complexity. However, despite this polynomial complexity, one needs efficient algorithms to solve it in realistic transportation networks. We focus on efficient computation of optimal itineraries for solving the 2SPSPP, i.e. determining the (optimal) pick-up and drop-off points and the two synchronized paths that minimize the total traveling time. We also define restriction areas for reasonable pick-up and drop-off points and use them to guide the algorithms using heuristics based on landmarks. Experiments are conducted on real transportation networks. The results show the efficiency of the proposed algorithms and the interest of restriction areas for pick-up or drop-off points in terms of CPU time, in addition to its application interest.

Cite as

Arthur Bit-Monnot, Christian Artigues, Marie-José Huguet, and Marc-Olivier Killijian. Carpooling: the 2 Synchronization Points Shortest Paths Problem. In 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 33, pp. 150-163, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bitmonnot_et_al:OASIcs.ATMOS.2013.150,
  author =	{Bit-Monnot, Arthur and Artigues, Christian and Huguet, Marie-Jos\'{e} and Killijian, Marc-Olivier},
  title =	{{Carpooling: the 2 Synchronization Points Shortest Paths Problem}},
  booktitle =	{13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems},
  pages =	{150--163},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-58-3},
  ISSN =	{2190-6807},
  year =	{2013},
  volume =	{33},
  editor =	{Frigioni, Daniele and Stiller, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2013.150},
  URN =		{urn:nbn:de:0030-drops-42517},
  doi =		{10.4230/OASIcs.ATMOS.2013.150},
  annote =	{Keywords: Dynamic Carpooling, Shortest Path Problem, Synchronized Paths}
}
Document
A Generic Time Hierarchy for Semantic Models With One Bit of Advice

Authors: Dieter van Melkebeek and Konstantin Pervyshev

Published in: Dagstuhl Seminar Proceedings, Volume 6111, Complexity of Boolean Functions (2006)


Abstract
We show that for any reasonable semantic model of computation and for any positive integer $a$ and rationals $1 leq c < d$, there exists a language computable in time $n^d$ with $a$ bits of advice but not in time $n^c$ with $a$ bits of advice. A semantic model is one for which there exists a computable enumeration that contains all machines in the model but may also contain others. We call such a model reasonable if it has an efficient universal machine that can be complemented within the model in exponential time and if it is efficiently closed under deterministic transducers. Our result implies the first such hierarchy theorem for randomized machines with zero-sided error, quantum machines with one- or zero-sided error, unambiguous machines, symmetric alternation, Arthur-Merlin games of any signature, interactive proof protocols with one or multiple provers, etc.

Cite as

Dieter van Melkebeek and Konstantin Pervyshev. A Generic Time Hierarchy for Semantic Models With One Bit of Advice. In Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, Volume 6111, pp. 1-39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{vanmelkebeek_et_al:DagSemProc.06111.3,
  author =	{van Melkebeek, Dieter and Pervyshev, Konstantin},
  title =	{{A Generic Time Hierarchy for Semantic Models With One Bit of Advice}},
  booktitle =	{Complexity of Boolean Functions},
  pages =	{1--39},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6111},
  editor =	{Matthias Krause and Pavel Pudl\'{a}k and R\"{u}diger Reischuk and Dieter van Melkebeek},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06111.3},
  URN =		{urn:nbn:de:0030-drops-6151},
  doi =		{10.4230/DagSemProc.06111.3},
  annote =	{Keywords: Time hierarchy, non-uniformity, one bit of advice, probabilistic algorithms}
}
  • Refine by Author
  • 2 van Melkebeek, Dieter
  • 1 Artigues, Christian
  • 1 Bit-Monnot, Arthur
  • 1 Broadbent, Anne
  • 1 Culf, Eric
  • Show More...

  • Refine by Classification
  • 1 Security and privacy → Mathematical foundations of cryptography
  • 1 Theory of computation → Cryptographic primitives
  • 1 Theory of computation → Pseudorandomness and derandomization
  • 1 Theory of computation → Quantum computation theory

  • Refine by Keyword
  • 1 Arthur-Merlin protocol
  • 1 Bit Commitment
  • 1 Dynamic Carpooling
  • 1 Hardness versus randomness tradeoff
  • 1 Randomness Expansion
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2023
  • 1 2006
  • 1 2013

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail