60 Search Results for "Case, John"


Document
Local Recurrent Problems in the SUPPORTED Model

Authors: Akanksha Agrawal, John Augustine, David Peleg, and Srikkanth Ramachandran

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
We study the SUPPORTED model of distributed computing introduced by Schmid and Suomela [Schmid and Suomela, 2013], which generalizes the LOCAL and CONGEST models. In this framework, multiple instances of the same problem, differing from each other by the subnetwork to which they apply. recur over time, and need to be solved efficiently online. To do that, one may rely on an initial preprocessing phase for computing some useful information. This preprocessing phase makes it possible, in some cases, to obtain improved distributed algorithms, overcoming locality-based time lower bounds. Our main contribution is to expand the class of problems to which the SUPPORTED model applies, by handling also multiple recurring instances of the same problem that differ from each other by some problem specific input, and not only the subnetwork to which they apply. We illustrate this by considering two extended problem classes. The first class, denoted PCS, concerns problems where client nodes of the network need to be served, and each recurring instance applies to some Partial Client Set. The second class, denoted PFO, concerns situations where each recurrent instance of the problem includes a partially fixed output, which needs to be completed to a full consistent solution. Specifically, we propose some natural recurrent variants of the dominating set problem and the coloring problem that are of interest particularly in the distributed setting. For these problems, we show that information about the topology can be used to overcome locality-based lower bounds. We also categorize the round complexity of Locally Checkable Labellings in the SUPPORTED model for the simple case of paths. Finally we present some interesting open problems and some partial results towards resolving them.

Cite as

Akanksha Agrawal, John Augustine, David Peleg, and Srikkanth Ramachandran. Local Recurrent Problems in the SUPPORTED Model. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.OPODIS.2023.22,
  author =	{Agrawal, Akanksha and Augustine, John and Peleg, David and Ramachandran, Srikkanth},
  title =	{{Local Recurrent Problems in the SUPPORTED Model}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.22},
  URN =		{urn:nbn:de:0030-drops-195124},
  doi =		{10.4230/LIPIcs.OPODIS.2023.22},
  annote =	{Keywords: Distributed Algorithms, LOCAL Model, SUPPORTED Model}
}
Document
RANDOM
Classical Simulation of One-Query Quantum Distinguishers

Authors: Andrej Bogdanov, Tsun Ming Cheung, Krishnamoorthy Dinesh, and John C. S. Lui

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the relative advantage of classical and quantum distinguishers of bounded query complexity over n-bit strings, focusing on the case of a single quantum query. A construction of Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is ε-distinguishable by a one-query quantum algorithm, but O(ε k/√n)-indistinguishable by any non-adaptive k-query classical algorithm. We show that every pair of distributions that is ε-distinguishable by a one-query quantum algorithm is distinguishable with k classical queries and (1) advantage min{Ω(ε√{k/n})), Ω(ε²k²/n)} non-adaptively (i.e., in one round), and (2) advantage Ω(ε²k/√{n log n}) in two rounds. As part of our analysis, we introduce a general method for converting unbiased estimators into distinguishers.

Cite as

Andrej Bogdanov, Tsun Ming Cheung, Krishnamoorthy Dinesh, and John C. S. Lui. Classical Simulation of One-Query Quantum Distinguishers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 43:1-43:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bogdanov_et_al:LIPIcs.APPROX/RANDOM.2023.43,
  author =	{Bogdanov, Andrej and Cheung, Tsun Ming and Dinesh, Krishnamoorthy and Lui, John C. S.},
  title =	{{Classical Simulation of One-Query Quantum Distinguishers}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{43:1--43:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.43},
  URN =		{urn:nbn:de:0030-drops-188684},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.43},
  annote =	{Keywords: Query complexity, quantum algorithms, hypothesis testing, Grothendieck’s inequality}
}
Document
External-Memory Dictionaries with Worst-Case Update Cost

Authors: Rathish Das, John Iacono, and Yakov Nekrich

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
The B^ε-tree [Brodal and Fagerberg 2003] is a simple I/O-efficient external-memory-model data structure that supports updates orders of magnitude faster than B-tree with a query performance comparable to the B-tree: for any positive constant ε < 1 insertions and deletions take O(1/B^(1-ε) log_B N) time (rather than O(log_BN) time for the classic B-tree), queries take O(log_B N) time and range queries returning k items take O(log_B N + k/B) time. Although the B^ε-tree has an optimal update/query tradeoff, the runtimes are amortized. Another structure, the write-optimized skip list, introduced by Bender et al. [PODS 2017], has the same performance as the B^ε-tree but with runtimes that are randomized rather than amortized. In this paper, we present a variant of the B^ε-tree with deterministic worst-case running times that are identical to the original’s amortized running times.

Cite as

Rathish Das, John Iacono, and Yakov Nekrich. External-Memory Dictionaries with Worst-Case Update Cost. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 21:1-21:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.ISAAC.2022.21,
  author =	{Das, Rathish and Iacono, John and Nekrich, Yakov},
  title =	{{External-Memory Dictionaries with Worst-Case Update Cost}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{21:1--21:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.21},
  URN =		{urn:nbn:de:0030-drops-173060},
  doi =		{10.4230/LIPIcs.ISAAC.2022.21},
  annote =	{Keywords: Data Structures, External Memory, Buffer Tree}
}
Document
Byzantine Connectivity Testing in the Congested Clique

Authors: John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
We initiate the study of distributed graph algorithms under the presence of Byzantine nodes. We consider the fundamental problem of testing the connectivity of a graph in the congested clique model in a Byzantine setting. We are given a n-vertex (arbitrary) graph G embedded in a n-node congested clique where an arbitrary subset of B nodes of the clique of size up to (1/3-ε)n (for any arbitrary small constant ε > 0) can be Byzantine. We consider the full information model where Byzantine nodes can behave arbitrarily, collude with each other, and have unlimited computational power and full knowledge of the states and actions of the honest nodes, including random choices made up to the current round. Our main result is an efficient randomized distributed algorithm that is able to correctly distinguish between two contrasting cases: (1) the graph G⧵ B (i.e., the graph induced by the removal of the vertices assigned to the Byzantine nodes in the clique) is connected or (2) the graph G is far from connected, i.e., it has at least 2|B|+1 connected components. Our algorithm runs in O(polylog n) rounds in the congested clique model and guarantees that all honest nodes will decide on the correct case with high probability. Since Byzantine nodes can lie about the vertices assigned to them, we show that this is essentially the best possible that can be done by any algorithm. Our result can be viewed also in the spirit of property testing, where our algorithm is able to distinguish between two contrasting cases while giving no guarantees if the graph falls in the grey area (i.e., neither of the cases occur). Our work is a step towards robust and secure distributed graph computation that can output meaningful results even in the presence of a large number of faulty or malicious nodes.

Cite as

John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine Connectivity Testing in the Congested Clique. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{augustine_et_al:LIPIcs.DISC.2022.7,
  author =	{Augustine, John and Molla, Anisur Rahaman and Pandurangan, Gopal and Vasudev, Yadu},
  title =	{{Byzantine Connectivity Testing in the Congested Clique}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.7},
  URN =		{urn:nbn:de:0030-drops-171987},
  doi =		{10.4230/LIPIcs.DISC.2022.7},
  annote =	{Keywords: Byzantine protocols, distributed graph algorithms, congested clique, graph connectivity, fault-tolerant computation, randomized algorithms}
}
Document
Conditional Lower Bounds for Dynamic Geometric Measure Problems

Authors: Justin Dallant and John Iacono

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We give new polynomial lower bounds for a number of dynamic measure problems in computational geometry. These lower bounds hold in the Word-RAM model, conditioned on the hardness of either 3SUM, APSP, or the Online Matrix-Vector Multiplication problem [Henzinger et al., STOC 2015]. In particular we get lower bounds in the incremental and fully-dynamic settings for counting maximal or extremal points in ℝ³, different variants of Klee’s Measure Problem, problems related to finding the largest empty disk in a set of points, and querying the size of the i'th convex layer in a planar set of points. We also answer a question of Chan et al. [SODA 2022] by giving a conditional lower bound for dynamic approximate square set cover. While many conditional lower bounds for dynamic data structures have been proven since the seminal work of Pătraşcu [STOC 2010], few of them relate to computational geometry problems. This is the first paper focusing on this topic. Most problems we consider can be solved in O(nlog n) time in the static case and their dynamic versions have only been approached from the perspective of improving known upper bounds. One exception to this is Klee’s measure problem in ℝ², for which Chan [CGTA 2010] gave an unconditional Ω(√n) lower bound on the worst-case update time. By a similar approach, we show that such a lower bound also holds for an important special case of Klee’s measure problem in ℝ³ known as the Hypervolume Indicator problem, even for amortized runtime in the incremental setting.

Cite as

Justin Dallant and John Iacono. Conditional Lower Bounds for Dynamic Geometric Measure Problems. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dallant_et_al:LIPIcs.ESA.2022.39,
  author =	{Dallant, Justin and Iacono, John},
  title =	{{Conditional Lower Bounds for Dynamic Geometric Measure Problems}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.39},
  URN =		{urn:nbn:de:0030-drops-169777},
  doi =		{10.4230/LIPIcs.ESA.2022.39},
  annote =	{Keywords: Computational geometry, Fine-grained complexity, Dynamic data structures}
}
Document
RAC Drawings of Graphs with Low Degree

Authors: Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, and Maximilian Pfister

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Motivated by cognitive experiments providing evidence that large crossing-angles do not impair the readability of a graph drawing, RAC (Right Angle Crossing) drawings were introduced to address the problem of producing readable representations of non-planar graphs by supporting the optimal case in which all crossings form 90° angles. In this work, we make progress on the problem of finding RAC drawings of graphs of low degree. In this context, a long-standing open question asks whether all degree-3 graphs admit straight-line RAC drawings. This question has been positively answered for the Hamiltonian degree-3 graphs. We improve on this result by extending to the class of 3-edge-colorable degree-3 graphs. When each edge is allowed to have one bend, we prove that degree-4 graphs admit such RAC drawings, a result which was previously known only for degree-3 graphs. Finally, we show that 7-edge-colorable degree-7 graphs admit RAC drawings with two bends per edge. This improves over the previous result on degree-6 graphs.

Cite as

Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, and Maximilian Pfister. RAC Drawings of Graphs with Low Degree. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.MFCS.2022.11,
  author =	{Angelini, Patrizio and Bekos, Michael A. and Katheder, Julia and Kaufmann, Michael and Pfister, Maximilian},
  title =	{{RAC Drawings of Graphs with Low Degree}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.11},
  URN =		{urn:nbn:de:0030-drops-168090},
  doi =		{10.4230/LIPIcs.MFCS.2022.11},
  annote =	{Keywords: Graph Drawing, RAC graphs, Straight-line and bent drawings}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game

Authors: William Kuszmaul and Shyam Narayanan

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The p-processor cup game is a classic and widely studied scheduling problem that captures the setting in which a p-processor machine must assign tasks to processors over time in order to ensure that no individual task ever falls too far behind. The problem is formalized as a multi-round game in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks) compete. The emptier’s goal is to minimize backlog, which is the maximum amount of outstanding work for any task. Recently, Kuszmaul and Westover (ITCS, 2021) proposed the variable-processor cup game, which considers the same problem, except that the amount of resources available to the players (i.e., the number p of processors) fluctuates between rounds of the game. They showed that this seemingly small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in the fixed p-processor game is Θ(log n), independent of p, the optimal backlog in the variable-processor game is Θ(n). The latter result was only known to apply to games with exponentially many rounds, however, and it has remained an open question what the optimal tradeoff between time and backlog is for shorter games. This paper establishes a tight trade-off curve between time and backlog in the variable-processor cup game. We show that, for a game consisting of t rounds, the optimal backlog is Θ (b (t)) where b(t) = t (if t ≤ log n) t^{1/3} log^{2/3} ({n^3}/t + 1) (if log n < t ≤ n^3) n (if n ^ 3 < t). An important consequence is that the optimal backlog is Θ(n) if and only if t ≥ Ω(n³). Our techniques also allow for us to resolve several other open questions concerning how the variable-processor cup game behaves in beyond-worst-case-analysis settings.

Cite as

William Kuszmaul and Shyam Narayanan. Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 85:1-85:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kuszmaul_et_al:LIPIcs.ICALP.2022.85,
  author =	{Kuszmaul, William and Narayanan, Shyam},
  title =	{{Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{85:1--85:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.85},
  URN =		{urn:nbn:de:0030-drops-164263},
  doi =		{10.4230/LIPIcs.ICALP.2022.85},
  annote =	{Keywords: Cup Games, Potential Functions, Greedy}
}
Document
Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity

Authors: Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete. Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ≤^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ≤^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al. As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).

Cite as

Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.ISAAC.2021.54,
  author =	{Allender, Eric and Gouwar, John and Hirahara, Shuichi and Robelle, Caleb},
  title =	{{Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.54},
  URN =		{urn:nbn:de:0030-drops-154875},
  doi =		{10.4230/LIPIcs.ISAAC.2021.54},
  annote =	{Keywords: Kolmogorov Complexity, Interactive Proofs, Minimum Circuit Size Problem, Worst-case to Average-case Reductions}
}
Document
An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility

Authors: Jean Cardinal, Justin Dallant, and John Iacono

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Afshani, Barbay and Chan (2017) introduced the notion of instance-optimal algorithm in the order-oblivious setting. An algorithm A is instance-optimal in the order-oblivious setting for a certain class of algorithms 𝒜 if the following hold: - A takes as input a sequence of objects from some domain; - for any instance σ and any algorithm A' ∈ 𝒜, the runtime of A on σ is at most a constant factor removed from the runtime of A' on the worst possible permutation of σ. If we identify permutations of a sequence as representing the same instance, this essentially states that A is optimal on every possible input (and not only in the worst case). We design instance-optimal algorithms for the problem of reporting, given a bichromatic set of points in the plane S, all pairs consisting of points of different color which span an empty axis-aligned rectangle (or reporting all points which appear in such a pair). This problem has applications for training-set reduction in nearest-neighbour classifiers. It is also related to the problem consisting of finding the decision boundaries of a euclidean nearest-neighbour classifier, for which Bremner et al. (2005) gave an optimal output-sensitive algorithm. By showing the existence of an instance-optimal algorithm in the order-oblivious setting for this problem we push the methods of Afshani et al. closer to their limits by adapting and extending them to a setting which exhibits highly non-local features. Previous problems for which instance-optimal algorithms were proven to exist were based solely on local relationships between points in a set.

Cite as

Jean Cardinal, Justin Dallant, and John Iacono. An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2021.24,
  author =	{Cardinal, Jean and Dallant, Justin and Iacono, John},
  title =	{{An Instance-Optimal Algorithm for Bichromatic Rectangular Visibility}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.24},
  URN =		{urn:nbn:de:0030-drops-146057},
  doi =		{10.4230/LIPIcs.ESA.2021.24},
  annote =	{Keywords: computational geometry, instance-optimality, colored point sets, empty rectangles, visibility}
}
Document
Worst-Case Efficient Dynamic Geometric Independent Set

Authors: Jean Cardinal, John Iacono, and Grigorios Koumoutsos

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present a data structure that maintains a constant-factor approximate maximum independent set for broad classes of fat objects in d dimensions, where d is assumed to be a constant, in sublinear worst-case update time. This gives the first results for dynamic independent set in a wide variety of geometric settings, such as disks, fat polygons, and their high-dimensional equivalents. For axis-aligned squares and hypercubes, our result improves upon all (recently announced) previous works. We obtain, in particular, a dynamic (4+ε)-approximation for squares, with O(log⁴ n) worst-case update time. Our result is obtained via a two-level approach. First, we develop a dynamic data structure which stores all objects and provides an approximate independent set when queried, with output-sensitive running time. We show that via standard methods such a structure can be used to obtain a dynamic algorithm with amortized update time bounds. Then, to obtain worst-case update time algorithms, we develop a generic deamortization scheme that with each insertion/deletion keeps (i) the update time bounded and (ii) the number of changes in the independent set constant. We show that such a scheme is applicable to fat objects by showing an appropriate generalization of a separator theorem. Interestingly, we show that our deamortization scheme is also necessary in order to obtain worst-case update bounds: If for a class of objects our scheme is not applicable, then no constant-factor approximation with sublinear worst-case update time is possible. We show that such a lower bound applies even for seemingly simple classes of geometric objects including axis-aligned rectangles in the plane.

Cite as

Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-Case Efficient Dynamic Geometric Independent Set. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2021.25,
  author =	{Cardinal, Jean and Iacono, John and Koumoutsos, Grigorios},
  title =	{{Worst-Case Efficient Dynamic Geometric Independent Set}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.25},
  URN =		{urn:nbn:de:0030-drops-146061},
  doi =		{10.4230/LIPIcs.ESA.2021.25},
  annote =	{Keywords: Maximum independent set, deamortization, approximation}
}
Document
Annotation of Fine-Grained Geographical Entities in German Texts

Authors: Julián Moreno-Schneider, Melina Plakidis, and Georg Rehm

Published in: OASIcs, Volume 93, 3rd Conference on Language, Data and Knowledge (LDK 2021)


Abstract
We work on the creation of a corpus, crawled from the internet, on the Berlin district of Moabit, primarily meant for training NER systems in German and English. Typical NER corpora and corresponding systems distinguish persons, organisations and locations, but do not distinguish different types of location entities. For our tourism-inspired use case, we need fine-grained annotations for toponyms. In this paper, we outline the fine-grained classification of geographical entities, the resulting annotations and we present preliminary results on automatically tagging toponyms in a small, bootstrapped gold corpus.

Cite as

Julián Moreno-Schneider, Melina Plakidis, and Georg Rehm. Annotation of Fine-Grained Geographical Entities in German Texts. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 11:1-11:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{morenoschneider_et_al:OASIcs.LDK.2021.11,
  author =	{Moreno-Schneider, Juli\'{a}n and Plakidis, Melina and Rehm, Georg},
  title =	{{Annotation of Fine-Grained Geographical Entities in German Texts}},
  booktitle =	{3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages =	{11:1--11:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-199-3},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{93},
  editor =	{Gromann, Dagmar and S\'{e}rasset, Gilles and Declerck, Thierry and McCrae, John P. and Gracia, Jorge and Bosque-Gil, Julia and Bobillo, Fernando and Heinisch, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2021.11},
  URN =		{urn:nbn:de:0030-drops-145473},
  doi =		{10.4230/OASIcs.LDK.2021.11},
  annote =	{Keywords: Named Entity Recognition, Geographical Entities, Annotation}
}
Document
Relevance Feedback Search Based on Automatic Annotation and Classification of Texts

Authors: Rafael Leal, Joonas Kesäniemi, Mikko Koho, and Eero Hyvönen

Published in: OASIcs, Volume 93, 3rd Conference on Language, Data and Knowledge (LDK 2021)


Abstract
The idea behind Relevance Feedback Search (RFBS) is to build search queries as an iterative and interactive process in which they are gradually refined based on the results of the previous search round. This can be helpful in situations where the end user cannot easily formulate their information needs at the outset as a well-focused query, or more generally as a way to filter and focus search results. This paper concerns (1) a framework that integrates keyword extraction and unsupervised classification into the RFBS paradigm and (2) the application of this framework to the legal domain as a use case. We focus on the Natural Language Processing (NLP) methods underlying the framework and application, where an automatic annotation tool is used for extracting document keywords as ontology concepts, which are then transformed into word embeddings to form vectorial representations of the texts. An unsupervised classification system that employs similar techniques is also used in order to classify the documents into broad thematic classes. This classification functionality is evaluated using two different datasets. As the use case, we describe an application perspective in the semantic portal LawSampo - Finnish Legislation and Case Law on the Semantic Web. This online demonstrator uses a dataset of 82145 sections in 3725 statutes of Finnish legislation and another dataset that comprises 13470 court decisions.

Cite as

Rafael Leal, Joonas Kesäniemi, Mikko Koho, and Eero Hyvönen. Relevance Feedback Search Based on Automatic Annotation and Classification of Texts. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{leal_et_al:OASIcs.LDK.2021.18,
  author =	{Leal, Rafael and Kes\"{a}niemi, Joonas and Koho, Mikko and Hyv\"{o}nen, Eero},
  title =	{{Relevance Feedback Search Based on Automatic Annotation and Classification of Texts}},
  booktitle =	{3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages =	{18:1--18:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-199-3},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{93},
  editor =	{Gromann, Dagmar and S\'{e}rasset, Gilles and Declerck, Thierry and McCrae, John P. and Gracia, Jorge and Bosque-Gil, Julia and Bobillo, Fernando and Heinisch, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2021.18},
  URN =		{urn:nbn:de:0030-drops-145543},
  doi =		{10.4230/OASIcs.LDK.2021.18},
  annote =	{Keywords: relevance feedback, keyword extraction, zero-shot text classification, word embeddings, LawSampo}
}
Document
HISTORIAE, History of Socio-Cultural Transformation as Linguistic Data Science. A Humanities Use Case

Authors: Florentina Armaselu, Elena-Simona Apostol, Anas Fahad Khan, Chaya Liebeskind, Barbara McGillivray, Ciprian-Octavian Truică, and Giedrė Valūnaitė Oleškevičienė

Published in: OASIcs, Volume 93, 3rd Conference on Language, Data and Knowledge (LDK 2021)


Abstract
The paper proposes an interdisciplinary approach including methods from disciplines such as history of concepts, linguistics, natural language processing (NLP) and Semantic Web, to create a comparative framework for detecting semantic change in multilingual historical corpora and generating diachronic ontologies as linguistic linked open data (LLOD). Initiated as a use case (UC4.2.1) within the COST Action Nexus Linguarum, European network for Web-centred linguistic data science, the study will explore emerging trends in knowledge extraction, analysis and representation from linguistic data science, and apply the devised methodology to datasets in the humanities to trace the evolution of concepts from the domain of socio-cultural transformation. The paper will describe the main elements of the methodological framework and preliminary planning of the intended workflow.

Cite as

Florentina Armaselu, Elena-Simona Apostol, Anas Fahad Khan, Chaya Liebeskind, Barbara McGillivray, Ciprian-Octavian Truică, and Giedrė Valūnaitė Oleškevičienė. HISTORIAE, History of Socio-Cultural Transformation as Linguistic Data Science. A Humanities Use Case. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 34:1-34:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{armaselu_et_al:OASIcs.LDK.2021.34,
  author =	{Armaselu, Florentina and Apostol, Elena-Simona and Khan, Anas Fahad and Liebeskind, Chaya and McGillivray, Barbara and Truic\u{a}, Ciprian-Octavian and Val\={u}nait\.{e} Ole\v{s}kevi\v{c}ien\.{e}, Giedr\.{e}},
  title =	{{HISTORIAE, History of Socio-Cultural Transformation as Linguistic Data Science. A Humanities Use Case}},
  booktitle =	{3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages =	{34:1--34:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-199-3},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{93},
  editor =	{Gromann, Dagmar and S\'{e}rasset, Gilles and Declerck, Thierry and McCrae, John P. and Gracia, Jorge and Bosque-Gil, Julia and Bobillo, Fernando and Heinisch, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2021.34},
  URN =		{urn:nbn:de:0030-drops-145704},
  doi =		{10.4230/OASIcs.LDK.2021.34},
  annote =	{Keywords: linguistic linked open data, natural language processing, semantic change, diachronic ontologies, digital humanities}
}
Document
Calculating Argument Diversity in Online Threads

Authors: Cedric Waterschoot, Antal van den Bosch, and Ernst van den Hemel

Published in: OASIcs, Volume 93, 3rd Conference on Language, Data and Knowledge (LDK 2021)


Abstract
We propose a method for estimating argument diversity and interactivity in online discussion threads. Using a case study on the subject of Black Pete ("Zwarte Piet") in the Netherlands, the approach for automatic detection of echo chambers is presented. Dynamic thread scoring calculates the status of the discussion on the thread level, while individual messages receive a contribution score reflecting the extent to which the post contributed to the overall interactivity in the thread. We obtain platform-specific results. Gab hosts only echo chambers, while the majority of Reddit threads are balanced in terms of perspectives. Twitter threads cover the whole spectrum of interactivity. While the results based on the case study mirror previous research, this calculation is only the first step towards better understanding and automatic detection of echo effects in online discussions.

Cite as

Cedric Waterschoot, Antal van den Bosch, and Ernst van den Hemel. Calculating Argument Diversity in Online Threads. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 39:1-39:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{waterschoot_et_al:OASIcs.LDK.2021.39,
  author =	{Waterschoot, Cedric and van den Bosch, Antal and van den Hemel, Ernst},
  title =	{{Calculating Argument Diversity in Online Threads}},
  booktitle =	{3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages =	{39:1--39:9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-199-3},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{93},
  editor =	{Gromann, Dagmar and S\'{e}rasset, Gilles and Declerck, Thierry and McCrae, John P. and Gracia, Jorge and Bosque-Gil, Julia and Bobillo, Fernando and Heinisch, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2021.39},
  URN =		{urn:nbn:de:0030-drops-145751},
  doi =		{10.4230/OASIcs.LDK.2021.39},
  annote =	{Keywords: Social Media, Echo Chamber, Interactivity, Argumentation, Stance}
}
Document
Track A: Algorithms, Complexity and Games
Multiple Random Walks on Graphs: Mixing Few to Cover Many

Authors: Nicolás Rivera, Thomas Sauerwald, and John Sylvester

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Random walks on graphs are an essential primitive for many randomised algorithms and stochastic processes. It is natural to ask how much can be gained by running k multiple random walks independently and in parallel. Although the cover time of multiple walks has been investigated for many natural networks, the problem of finding a general characterisation of multiple cover times for worst-case start vertices (posed by Alon, Avin, Koucký, Kozma, Lotker, and Tuttle in 2008) remains an open problem. First, we improve and tighten various bounds on the stationary cover time when k random walks start from vertices sampled from the stationary distribution. For example, we prove an unconditional lower bound of Ω((n/k) log n) on the stationary cover time, holding for any n-vertex graph G and any 1 ≤ k = o(nlog n). Secondly, we establish the stationary cover times of multiple walks on several fundamental networks up to constant factors. Thirdly, we present a framework characterising worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time for multiple walks called the partial mixing time. Roughly speaking, the partial mixing time only requires a specific portion of all random walks to be mixed. Using these new concepts, we can establish (or recover) the worst-case cover times for many networks including expanders, preferential attachment graphs, grids, binary trees and hypercubes.

Cite as

Nicolás Rivera, Thomas Sauerwald, and John Sylvester. Multiple Random Walks on Graphs: Mixing Few to Cover Many. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 107:1-107:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{rivera_et_al:LIPIcs.ICALP.2021.107,
  author =	{Rivera, Nicol\'{a}s and Sauerwald, Thomas and Sylvester, John},
  title =	{{Multiple Random Walks on Graphs: Mixing Few to Cover Many}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{107:1--107:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.107},
  URN =		{urn:nbn:de:0030-drops-141764},
  doi =		{10.4230/LIPIcs.ICALP.2021.107},
  annote =	{Keywords: Multiple Random walks, Markov Chains, Random Walks, Cover Time}
}
  • Refine by Author
  • 6 Iacono, John
  • 4 Cardinal, Jean
  • 2 Augustine, John
  • 2 Dallant, Justin
  • 2 Fearnley, John
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Computational geometry
  • 4 Theory of computation → Design and analysis of algorithms
  • 3 Theory of computation → Logic and verification
  • 2 Computing methodologies → Information extraction
  • 2 Software and its engineering → Formal software verification
  • Show More...

  • Refine by Keyword
  • 2 Coq
  • 2 Model Checking
  • 2 randomized algorithms
  • 1 3SUM-hard problems
  • 1 Abductive Logic Programming
  • Show More...

  • Refine by Type
  • 60 document

  • Refine by Publication Year
  • 16 2019
  • 8 2021
  • 6 2011
  • 5 2022
  • 4 2009
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail