1 Search Results for "Chambart, Pierre"


Document
Tenderbake - A Solution to Dynamic Repeated Consensus for Blockchains

Authors: Lăcrămioara Aştefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara Tucci-Piergiovanni, and Eugen Zălinescu

Published in: OASIcs, Volume 92, 4th International Symposium on Foundations and Applications of Blockchain 2021 (FAB 2021)


Abstract
First-generation blockchains provide probabilistic finality: a block can be revoked, albeit the probability decreases as the block "sinks" deeper into the chain. Recent proposals revisited committee-based BFT consensus to provide deterministic finality: as soon as a block is validated, it is never revoked. A distinguishing characteristic of these second-generation blockchains over classical BFT protocols is that committees change over time as the participation and the blockchain state evolve. In this paper, we push forward in this direction by proposing a formalization of the Dynamic Repeated Consensus problem and by providing generic procedures to solve it in the context of blockchains. Our approach is modular in that one can plug in different synchronizers and single-shot consensus. To offer a complete solution, we provide a concrete instantiation, called {{Tenderbake}}, and present a blockchain synchronizer and a single-shot consensus algorithm, working in a Byzantine and partially synchronous system model with eventually synchronous clocks. In contrast to recent proposals, our methodology is driven by the need to bound the message buffers. This is essential in preventing spamming and run-time memory errors. Moreover, {{Tenderbake}} processes can synchronize with each other without exchanging messages, leveraging instead the information stored in the blockchain.

Cite as

Lăcrămioara Aştefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara Tucci-Piergiovanni, and Eugen Zălinescu. Tenderbake - A Solution to Dynamic Repeated Consensus for Blockchains. In 4th International Symposium on Foundations and Applications of Blockchain 2021 (FAB 2021). Open Access Series in Informatics (OASIcs), Volume 92, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{astefanoaei_et_al:OASIcs.FAB.2021.1,
  author =	{A\c{s}tef\u{a}noaei, L\u{a}cr\u{a}mioara and Chambart, Pierre and Del Pozzo, Antonella and Rieutord, Thibault and Tucci-Piergiovanni, Sara and Z\u{a}linescu, Eugen},
  title =	{{Tenderbake - A Solution to Dynamic Repeated Consensus for Blockchains}},
  booktitle =	{4th International Symposium on Foundations and Applications of Blockchain 2021 (FAB 2021)},
  pages =	{1:1--1:23},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-196-2},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{92},
  editor =	{Gramoli, Vincent and Sadoghi, Mohammad},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.FAB.2021.1},
  URN =		{urn:nbn:de:0030-drops-139877},
  doi =		{10.4230/OASIcs.FAB.2021.1},
  annote =	{Keywords: Blockchain, BFT-Consensus, Dynamic Repeated Consensus}
}
  • Refine by Author
  • 1 Aştefănoaei, Lăcrămioara
  • 1 Chambart, Pierre
  • 1 Del Pozzo, Antonella
  • 1 Rieutord, Thibault
  • 1 Tucci-Piergiovanni, Sara
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Distributed algorithms

  • Refine by Keyword
  • 1 BFT-Consensus
  • 1 Blockchain
  • 1 Dynamic Repeated Consensus

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail