9 Search Results for "Chan, T.-H. Hubert"


Document
Advanced Composition Theorems for Differential Obliviousness

Authors: Mingxun Zhou, Mengshi Zhao, T-H. Hubert Chan, and Elaine Shi

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Differential obliviousness (DO) is a privacy notion which mandates that the access patterns of a program satisfy differential privacy. Earlier works have shown that in numerous applications, differential obliviousness allows us to circumvent fundamental barriers pertaining to fully oblivious algorithms, resulting in asymptotical (and sometimes even polynomial) performance improvements. Although DO has been applied to various contexts, including the design of algorithms, data structures, and protocols, its compositional properties are not explored until the recent work of Zhou et al. (Eurocrypt'23). Specifically, Zhou et al. showed that the original DO notion is not composable. They then proposed a refinement of DO called neighbor-preserving differential obliviousness (NPDO), and proved a basic composition for NPDO. In Zhou et al.’s basic composition theorem for NPDO, the privacy loss is linear in k for k-fold composition. In comparison, for standard differential privacy, we can enjoy roughly √k loss for k-fold composition by applying the well-known advanced composition theorem given an appropriate parameter range. Therefore, a natural question left open by their work is whether we can also prove an analogous advanced composition for NPDO. In this paper, we answer this question affirmatively. As a key step in proving an advanced composition theorem for NPDO, we define a more operational notion called symmetric NPDO which we prove to be equivalent to NPDO. Using symmetric NPDO as a stepping stone, we also show how to generalize NPDO to more general notions of divergence, resulting in Rényi-NPDO, zero-concentrated-NPDO, Gassian-NPDO, and g-NPDO notions. We also prove composition theorems for these generalized notions of NPDO.

Cite as

Mingxun Zhou, Mengshi Zhao, T-H. Hubert Chan, and Elaine Shi. Advanced Composition Theorems for Differential Obliviousness. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 103:1-103:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhou_et_al:LIPIcs.ITCS.2024.103,
  author =	{Zhou, Mingxun and Zhao, Mengshi and Chan, T-H. Hubert and Shi, Elaine},
  title =	{{Advanced Composition Theorems for Differential Obliviousness}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{103:1--103:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.103},
  URN =		{urn:nbn:de:0030-drops-196315},
  doi =		{10.4230/LIPIcs.ITCS.2024.103},
  annote =	{Keywords: Differential Privacy, Oblivious Algorithms}
}
Document
Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions

Authors: T-H. Hubert Chan, Elaine Shi, Wei-Kai Lin, and Kartik Nayak

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
Oblivious RAM (ORAM) is a technique for compiling any RAM program to an oblivious counterpart, i.e., one whose access patterns do not leak information about the secret inputs. Similarly, Oblivious Parallel RAM (OPRAM) compiles a parallel RAM program to an oblivious counterpart. In this paper, we care about ORAM/OPRAM with perfect security, i.e., the access patterns must be identically distributed no matter what the program’s memory request sequence is. In the past, two types of perfect ORAMs/OPRAMs have been considered: constructions whose performance bounds hold in expectation (but may occasionally run more slowly); and constructions whose performance bounds hold deterministically (even though the algorithms themselves are randomized). In this paper, we revisit the performance metrics for perfect ORAM/OPRAM, and show novel constructions that achieve asymptotical improvements for all performance metrics. Our first result is a new perfectly secure OPRAM scheme with O(log³ N/log log N) expected overhead. In comparison, prior literature has been stuck at O(log³ N) for more than a decade. Next, we show how to construct a perfect ORAM with O(log³ N/log log N) deterministic simulation overhead. We further show how to make the scheme parallel, resulting in an perfect OPRAM with O(log⁴ N/log log N) deterministic simulation overhead. For perfect ORAMs/OPRAMs with deterministic performance bounds, our results achieve subexponential improvement over the state-of-the-art. Specifically, the best known prior scheme incurs more than √N deterministic simulation overhead (Raskin and Simkin, Asiacrypt'19); moreover, their scheme works only for the sequential setting and is not amenable to parallelization. Finally, we additionally consider perfect ORAMs/OPRAMs whose performance bounds hold with high probability. For this new performance metric, we show new constructions whose simulation overhead is upper bounded by O(log³ /log log N) except with negligible in N probability, i.e., we prove high-probability performance bounds that match the expected bounds mentioned earlier.

Cite as

T-H. Hubert Chan, Elaine Shi, Wei-Kai Lin, and Kartik Nayak. Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 8:1-8:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ITC.2021.8,
  author =	{Chan, T-H. Hubert and Shi, Elaine and Lin, Wei-Kai and Nayak, Kartik},
  title =	{{Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{8:1--8:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.8},
  URN =		{urn:nbn:de:0030-drops-143271},
  doi =		{10.4230/LIPIcs.ITC.2021.8},
  annote =	{Keywords: perfect oblivious RAM, oblivious PRAM}
}
Document
Differentially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious Algorithms

Authors: Shumo Chu, Danyang Zhuo, Elaine Shi, and T-H. Hubert Chan

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
Numerous high-profile works have shown that access patterns to even encrypted databases can leak secret information and sometimes even lead to reconstruction of the entire database. To thwart access pattern leakage, the literature has focused on oblivious algorithms, where obliviousness requires that the access patterns leak nothing about the input data. In this paper, we consider the Join operator, an important database primitive that has been extensively studied and optimized. Unfortunately, any fully oblivious Join algorithm would require always padding the result to the worst-case length which is quadratic in the data size N. In comparison, an insecure baseline incurs only O(R + N) cost where R is the true result length, and in the common case in practice, R is relatively short. As a typical example, when R = O(N), any fully oblivious algorithm must inherently incur a prohibitive, N-fold slowdown relative to the insecure baseline. Indeed, the (non-private) database and algorithms literature invariably focuses on studying the instance-specific rather than worst-case performance of database algorithms. Unfortunately, the stringent notion of full obliviousness precludes the design of efficient algorithms with non-trivial instance-specific performance. To overcome this worst-case performance barrier of full obliviousness and enable algorithms with good instance-specific performance, we consider a relaxed notion of access pattern privacy called (ε, δ)-differential obliviousness (DO), originally proposed in the seminal work of Chan et al. (SODA'19). Rather than insisting that the access patterns leak no information whatsoever, the relaxed DO notion requires that the access patterns satisfy (ε, δ)-differential privacy. We show that by adopting the relaxed DO notion, we can obtain efficient database Join mechanisms whose instance-specific performance approximately matches the insecure baseline, while still offering a meaningful notion of privacy to individual users. Complementing our upper bound results, we also prove new lower bounds regarding the performance of any DO Join algorithm. Differential obliviousness (DO) is a new notion and is a relatively unexplored territory. Following the pioneering investigations by Chan et al. and others, our work is among the very first to formally explore how DO can help overcome the worst-case performance curse of full obliviousness; moreover, we motivate our work with database applications. Our work shows new evidence why DO might be a promising notion, and opens up several exciting future directions.

Cite as

Shumo Chu, Danyang Zhuo, Elaine Shi, and T-H. Hubert Chan. Differentially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious Algorithms. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 19:1-19:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chu_et_al:LIPIcs.ITC.2021.19,
  author =	{Chu, Shumo and Zhuo, Danyang and Shi, Elaine and Chan, T-H. Hubert},
  title =	{{Differentially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious Algorithms}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{19:1--19:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.19},
  URN =		{urn:nbn:de:0030-drops-143386},
  doi =		{10.4230/LIPIcs.ITC.2021.19},
  annote =	{Keywords: differentially oblivious, database join, instance-specific performance}
}
Document
MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Authors: T-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, and Elaine Shi

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend itself to an efficient implementation on MPC even without security, then we cannot hope to compute it efficiently on MPC with security. We show, on the other hand, that any task that can be efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically, we show the following results: - any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotically preserving its round and space complexity, where communication-obliviousness ensures that any network intermediary observing the communication patterns learn no information about the secret inputs; - assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure counterpart that defends against an adversary who controls not only intermediate network routers but additionally up to 1/3 - η fraction of machines (for an arbitrarily small constant η) - moreover, this compilation preserves the round complexity tightly, and preserves the space complexity upto a multiplicative security parameter related blowup. As an initial exploration of this important direction, our work suggests new definitions and proposes novel protocols that blend algorithmic and cryptographic techniques.

Cite as

T-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, and Elaine Shi. MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 75:1-75:52, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ITCS.2020.75,
  author =	{Chan, T-H. Hubert and Chung, Kai-Min and Lin, Wei-Kai and Shi, Elaine},
  title =	{{MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{75:1--75:52},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.75},
  URN =		{urn:nbn:de:0030-drops-117600},
  doi =		{10.4230/LIPIcs.ITCS.2020.75},
  annote =	{Keywords: massively parallel computation, secure multi-party computation}
}
Document
Track A: Algorithms, Complexity and Games
Covering Metric Spaces by Few Trees

Authors: Yair Bartal, Nova Fandina, and Ofer Neiman

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
A tree cover of a metric space (X,d) is a collection of trees, so that every pair x,y in X has a low distortion path in one of the trees. If it has the stronger property that every point x in X has a single tree with low distortion paths to all other points, we call this a Ramsey tree cover. Tree covers and Ramsey tree covers have been studied by [Yair Bartal et al., 2005; Anupam Gupta et al., 2004; T-H. Hubert Chan et al., 2005; Gupta et al., 2006; Mendel and Naor, 2007], and have found several important algorithmic applications, e.g. routing and distance oracles. The union of trees in a tree cover also serves as a special type of spanner, that can be decomposed into a few trees with low distortion paths contained in a single tree; Such spanners for Euclidean pointsets were presented by [S. Arya et al., 1995]. In this paper we devise efficient algorithms to construct tree covers and Ramsey tree covers for general, planar and doubling metrics. We pay particular attention to the desirable case of distortion close to 1, and study what can be achieved when the number of trees is small. In particular, our work shows a large separation between what can be achieved by tree covers vs. Ramsey tree covers.

Cite as

Yair Bartal, Nova Fandina, and Ofer Neiman. Covering Metric Spaces by Few Trees. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 20:1-20:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bartal_et_al:LIPIcs.ICALP.2019.20,
  author =	{Bartal, Yair and Fandina, Nova and Neiman, Ofer},
  title =	{{Covering Metric Spaces by Few Trees}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{20:1--20:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.20},
  URN =		{urn:nbn:de:0030-drops-105967},
  doi =		{10.4230/LIPIcs.ICALP.2019.20},
  annote =	{Keywords: tree cover, Ramsey tree cover, probabilistic hierarchical family}
}
Document
A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics

Authors: T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
We present a unified (randomized) polynomial-time approximation scheme (PTAS) for the prize collecting traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP) in doubling metrics. Given a metric space and a penalty function on a subset of points known as terminals, a solution is a subgraph on points in the metric space, whose cost is the weight of its edges plus the penalty due to terminals not covered by the subgraph. Under our unified framework, the solution subgraph needs to be Eulerian for PCTSP, while it needs to be a tree for PCSTP. Before our work, even a QPTAS for the problems in doubling metrics is not known. Our unified PTAS is based on the previous dynamic programming frameworks proposed in [Talwar STOC 2004] and [Bartal, Gottlieb, Krauthgamer STOC 2012]. However, since it is unknown which part of the optimal cost is due to edge lengths and which part is due to penalties of uncovered terminals, we need to develop new techniques to apply previous divide-and-conquer strategies and sparse instance decompositions.

Cite as

T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang. A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 15:1-15:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ESA.2018.15,
  author =	{Chan, T-H. Hubert and Jiang, Haotian and Jiang, Shaofeng H.-C.},
  title =	{{A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{15:1--15:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.15},
  URN =		{urn:nbn:de:0030-drops-94781},
  doi =		{10.4230/LIPIcs.ESA.2018.15},
  annote =	{Keywords: Doubling Dimension, Traveling Salesman Problem, Polynomial Time Approximation Scheme, Steiner Tree Problem, Prize Collecting}
}
Document
Online Submodular Maximization Problem with Vector Packing Constraint

Authors: T.-H. Hubert Chan, Shaofeng H.-C. Jiang, Zhihao Gavin Tang, and Xiaowei Wu

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
We consider the online vector packing problem in which we have a d dimensional knapsack and items u with weight vectors w_u in R_+^d arrive online in an arbitrary order. Upon the arrival of an item, the algorithm must decide immediately whether to discard or accept the item into the knapsack. When item u is accepted, w_u(i) units of capacity on dimension i will be taken up, for each i in [d]. To satisfy the knapsack constraint, an accepted item can be later disposed of with no cost, but discarded or disposed of items cannot be recovered. The objective is to maximize the utility of the accepted items S at the end of the algorithm, which is given by f(S) for some non-negative monotone submodular function f. For any small constant epsilon > 0, we consider the special case that the weight of an item on every dimension is at most a (1- epsilon) fraction of the total capacity, and give a polynomial-time deterministic O(k / epsilon^2)-competitive algorithm for the problem, where k is the (column) sparsity of the weight vectors. We also show several (almost) tight hardness results even when the algorithm is computationally unbounded. We first show that under the epsilon-slack assumption, no deterministic algorithm can obtain any o(k) competitive ratio, and no randomized algorithm can obtain any o(k / log k) competitive ratio. We then show that for the general case (when epsilon = 0), no randomized algorithm can obtain any o(k) competitive ratio. In contrast to the (1+delta) competitive ratio achieved in Kesselheim et al. [STOC 2014] for the problem with random arrival order of items and under large capacity assumption, we show that in the arbitrary arrival order case, even when |w_u|_infinity is arbitrarily small for all items u, it is impossible to achieve any o(log k / log log k) competitive ratio.

Cite as

T.-H. Hubert Chan, Shaofeng H.-C. Jiang, Zhihao Gavin Tang, and Xiaowei Wu. Online Submodular Maximization Problem with Vector Packing Constraint. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ESA.2017.24,
  author =	{Chan, T.-H. Hubert and Jiang, Shaofeng H.-C. and Tang, Zhihao Gavin and Wu, Xiaowei},
  title =	{{Online Submodular Maximization Problem with Vector Packing Constraint}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.24},
  URN =		{urn:nbn:de:0030-drops-78190},
  doi =		{10.4230/LIPIcs.ESA.2017.24},
  annote =	{Keywords: Submodular Maximization, Free-disposal, Vector Packing}
}
Document
On (1, epsilon)-Restricted Max-Min Fair Allocation Problem

Authors: T-H. Hubert Chan, Zhihao Gavin Tang, and Xiaowei Wu

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We study the max-min fair allocation problem in which a set of m indivisible items are to be distributed among n agents such that the minimum utility among all agents is maximized. In the restricted setting, the utility of each item j on agent i is either 0 or some non-negative weight w_j. For this setting, Asadpour et al. [TALG, 2012] showed that a certain configuration-LP can be used to estimate the optimal value within a factor of 4 + delta, for any delta > 0, which was recently extended by Annamalai et al. [SODA 2015] to give a polynomial-time 13-approximation algorithm for the problem. For hardness results, Bezáková and Dani [SIGecom Exch., 2005] showed that it is NP-hard to approximate the problem within any ratio smaller than 2. In this paper we consider the (1, epsilon)-restricted max-min fair allocation problem, in which for some parameter epsilon in (0, 1), each item j is either heavy (w_j = 1) or light (w_j = epsilon). We show that the (1, epsilon)-restricted case is also NP-hard to approximate within any ratio smaller than 2. Hence, this simple special case is still algorithmically interesting. Using the configuration-LP, we are able to estimate the optimal value of the problem within a factor of 3 + delta, for any delta > 0. Extending this idea, we also obtain a quasi-polynomial time (3 + 4 epsilon)-approximation algorithm and a polynomial time 9-approximation algorithm. Moreover, we show that as epsilon tends to 0, the approximation ratio of our polynomial-time algorithm approaches 3 + 2 sqrt{2} approx 5.83.

Cite as

T-H. Hubert Chan, Zhihao Gavin Tang, and Xiaowei Wu. On (1, epsilon)-Restricted Max-Min Fair Allocation Problem. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 23:1-23:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ISAAC.2016.23,
  author =	{Chan, T-H. Hubert and Tang, Zhihao Gavin and Wu, Xiaowei},
  title =	{{On (1, epsilon)-Restricted Max-Min Fair Allocation Problem}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{23:1--23:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.23},
  URN =		{urn:nbn:de:0030-drops-67939},
  doi =		{10.4230/LIPIcs.ISAAC.2016.23},
  annote =	{Keywords: Max-Min Fair Allocation, Hypergraph Matching}
}
Document
Beating Ratio 0.5 for Weighted Oblivious Matching Problems

Authors: Melika Abolhassani, T.-H. Hubert Chan, Fei Chen, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Mahini Hamid, and Xiaowei Wu

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We prove the first non-trivial performance ratios strictly above 0.5 for weighted versions of the oblivious matching problem. Even for the unweighted version, since Aronson, Dyer, Frieze, and Suen first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty years several attempts have been made to improve this ratio, until Chan, Chen, Wu and Zhao successfully achieved a significant ratio of 0.523 very recently (SODA 2014). To the best of our knowledge, our work is the first in the literature that considers the node-weighted and edge-weighted versions of the problem in arbitrary graphs (as opposed to bipartite graphs). (1) For arbitrary node weights, we prove that a weighted version of the Ranking algorithm has ratio strictly above 0.5. We have discovered a new structural property of the ranking algorithm: if a node has two unmatched neighbors at the end of algorithm, then it will still be matched even when its rank is demoted to the bottom. This property allows us to form LP constraints for both the node-weighted and the unweighted oblivious matching problems. As a result, we prove that the ratio for the node-weighted case is at least 0.501512. Interestingly via the structural property, we can also improve slightly the ratio for the unweighted case to 0.526823 (from the previous best 0.523166 in SODA 2014). (2) For a bounded number of distinct edge weights, we show that ratio strictly above 0.5 can be achieved by partitioning edges carefully according to the weights, and running the (unweighted) Ranking algorithm on each part. Our analysis is based on a new primal-dual framework known as \emph{matching coverage}, in which dual feasibility is bypassed. Instead, only dual constraints corresponding to edges in an optimal matching are satisfied. Using this framework we also design and analyze an algorithm for the edge-weighted online bipartite matching problem with free disposal. We prove that for the case of bounded online degrees, the ratio is strictly above 0.5.

Cite as

Melika Abolhassani, T.-H. Hubert Chan, Fei Chen, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Mahini Hamid, and Xiaowei Wu. Beating Ratio 0.5 for Weighted Oblivious Matching Problems. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{abolhassani_et_al:LIPIcs.ESA.2016.3,
  author =	{Abolhassani, Melika and Chan, T.-H. Hubert and Chen, Fei and Esfandiari, Hossein and Hajiaghayi, MohammadTaghi and Hamid, Mahini and Wu, Xiaowei},
  title =	{{Beating Ratio 0.5 for Weighted Oblivious Matching Problems}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.3},
  URN =		{urn:nbn:de:0030-drops-63443},
  doi =		{10.4230/LIPIcs.ESA.2016.3},
  annote =	{Keywords: Weighted matching, oblivious algorithms, Ranking, linear programming}
}
  • Refine by Author
  • 6 Chan, T-H. Hubert
  • 4 Shi, Elaine
  • 3 Wu, Xiaowei
  • 2 Chan, T.-H. Hubert
  • 2 Jiang, Shaofeng H.-C.
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Cryptographic protocols
  • 1 Information systems → Join algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Security and privacy → Cryptography
  • 1 Security and privacy → Information-theoretic techniques
  • Show More...

  • Refine by Keyword
  • 1 Differential Privacy
  • 1 Doubling Dimension
  • 1 Free-disposal
  • 1 Hypergraph Matching
  • 1 Max-Min Fair Allocation
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 2 2016
  • 2 2021
  • 1 2017
  • 1 2018
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail