31 Search Results for "Chen, Daniel"


Document
A Faster Algorithm for Vertex Cover Parameterized by Solution Size

Authors: David G. Harris and N. S. Narayanaswamy

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We describe a new algorithm for vertex cover with runtime O^*(1.25284^k), where k is the size of the desired solution and O^* hides polynomial factors in the input size. This improves over the previous runtime of O^*(1.2738^k) due to Chen, Kanj, & Xia (2010) standing for more than a decade. The key to our algorithm is to use a measure which simultaneously tracks k as well as the optimal value λ of the vertex cover LP relaxation. This allows us to make use of prior algorithms for Maximum Independent Set in bounded-degree graphs and Above-Guarantee Vertex Cover. The main step in the algorithm is to branch on high-degree vertices, while ensuring that both k and μ = k - λ are decreased at each step. There can be local obstructions in the graph that prevent μ from decreasing in this process; we develop a number of novel branching steps to handle these situations.

Cite as

David G. Harris and N. S. Narayanaswamy. A Faster Algorithm for Vertex Cover Parameterized by Solution Size. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harris_et_al:LIPIcs.STACS.2024.40,
  author =	{Harris, David G. and Narayanaswamy, N. S.},
  title =	{{A Faster Algorithm for Vertex Cover Parameterized by Solution Size}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.40},
  URN =		{urn:nbn:de:0030-drops-197508},
  doi =		{10.4230/LIPIcs.STACS.2024.40},
  annote =	{Keywords: Vertex cover, FPT, Graph algorithm}
}
Document
Sub-Exponential Time Lower Bounds for #VC and #Matching on 3-Regular Graphs

Authors: Ying Liu and Shiteng Chen

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
This article focuses on the sub-exponential time lower bounds for two canonical #P-hard problems: counting the vertex covers of a given graph (#VC) and counting the matchings of a given graph (#Matching), under the well-known counting exponential time hypothesis (#ETH). Interpolation is an essential method to build reductions in this article and in the literature. We use the idea of block interpolation to prove that both #VC and #Matching have no 2^{o(N)} time deterministic algorithm, even if the given graph with N vertices is a 3-regular graph. However, when it comes to proving the lower bounds for #VC and #Matching on planar graphs, both block interpolation and polynomial interpolation do not work. We prove that, for any integer N > 0, we can simulate N pairwise linearly independent unary functions by gadgets with only O(log N) size in the context of #VC and #Matching. Then we use log-size gadgets in the polynomial interpolation to prove that planar #VC and planar #Matching have no 2^{o(√{N/(log N)})} time deterministic algorithm. The lower bounds hold even if the given graph with N vertices is a 3-regular graph. Based on a stronger hypothesis, randomized exponential time hypothesis (rETH), we can avoid using interpolation. We prove that if rETH holds, both planar #VC and planar #Matching have no 2^{o(√N)} time randomized algorithm, even that the given graph with N vertices is a planar 3-regular graph. The 2^{Ω(√N)} time lower bounds are tight, since there exist 2^{O(√N)} time algorithms for planar #VC and planar #Matching. We also develop a fine-grained dichotomy for a class of counting problems, symmetric Holant*.

Cite as

Ying Liu and Shiteng Chen. Sub-Exponential Time Lower Bounds for #VC and #Matching on 3-Regular Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 49:1-49:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.STACS.2024.49,
  author =	{Liu, Ying and Chen, Shiteng},
  title =	{{Sub-Exponential Time Lower Bounds for #VC and #Matching on 3-Regular Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{49:1--49:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.49},
  URN =		{urn:nbn:de:0030-drops-197593},
  doi =		{10.4230/LIPIcs.STACS.2024.49},
  annote =	{Keywords: computational complexity, planar Holant, polynomial interpolation, rETH, sub-exponential, #ETH, #Matching, #VC}
}
Document
Improved Distributed Algorithms for Random Colorings

Authors: Charlie Carlson, Daniel Frishberg, and Eric Vigoda

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
Markov Chain Monte Carlo (MCMC) algorithms are a widely-used algorithmic tool for sampling from high-dimensional distributions, a notable example is the equilibirum distribution of graphical models. The Glauber dynamics, also known as the Gibbs sampler, is the simplest example of an MCMC algorithm; the transitions of the chain update the configuration at a randomly chosen coordinate at each step. Several works have studied distributed versions of the Glauber dynamics and we extend these efforts to a more general family of Markov chains. An important combinatorial problem in the study of MCMC algorithms is random colorings. Given a graph G of maximum degree Δ and an integer k ≥ Δ+1, the goal is to generate a random proper vertex k-coloring of G. Jerrum (1995) proved that the Glauber dynamics has O(nlog{n}) mixing time when k > 2Δ. Fischer and Ghaffari (2018), and independently Feng, Hayes, and Yin (2018), presented a parallel and distributed version of the Glauber dynamics which converges in O(log{n}) rounds for k > (2+ε)Δ for any ε > 0. We improve this result to k > (11/6-δ)Δ for a fixed δ > 0. This matches the state of the art for randomly sampling colorings of general graphs in the sequential setting. Whereas previous works focused on distributed variants of the Glauber dynamics, our work presents a parallel and distributed version of the more general flip dynamics presented by Vigoda (2000) (and refined by Chen, Delcourt, Moitra, Perarnau, and Postle (2019)), which recolors local maximal two-colored components in each step.

Cite as

Charlie Carlson, Daniel Frishberg, and Eric Vigoda. Improved Distributed Algorithms for Random Colorings. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carlson_et_al:LIPIcs.OPODIS.2023.13,
  author =	{Carlson, Charlie and Frishberg, Daniel and Vigoda, Eric},
  title =	{{Improved Distributed Algorithms for Random Colorings}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.13},
  URN =		{urn:nbn:de:0030-drops-195030},
  doi =		{10.4230/LIPIcs.OPODIS.2023.13},
  annote =	{Keywords: Distributed Graph Algorithms, Local Algorithms, Coloring, Glauber Dynamics, Sampling, Markov Chains}
}
Document
Distance Queries over Dynamic Interval Graphs

Authors: Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set of intervals in which no interval is properly contained in another. For proper interval graphs, we design a linear space data structure which supports distance queries (computing the distance between two query vertices) and vertex insertion or deletion in O(lg n) worst-case time, where n is the number of vertices currently in G. Under incremental (insertion only) or decremental (deletion only) settings, we design linear space data structures that support distance queries in O(lg n) worst-case time and vertex insertion or deletion in O(lg n) amortized time, where n is the maximum number of vertices in the graph. Under fully dynamic settings, we design a data structure that represents an interval graph G in O(n) words of space to support distance queries in O(n lg n/S(n)) worst-case time and vertex insertion or deletion in O(S(n)+lg n) worst-case time, where n is the number of vertices currently in G and S(n) is an arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). This implies an O(n)-word solution with O(√{nlg n})-time support for both distance queries and updates. All four data structures can answer shortest path queries by reporting the vertices in the shortest path between two query vertices in O(lg n) worst-case time per vertex. We also study the hardness of supporting distance queries under updates over an intersection graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the problem of computing the diameter of a dynamic connected interval graph.

Cite as

Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang. Distance Queries over Dynamic Interval Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 18:1-18:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2023.18,
  author =	{Chen, Jingbang and He, Meng and Munro, J. Ian and Peng, Richard and Wu, Kaiyu and Zhang, Daniel J.},
  title =	{{Distance Queries over Dynamic Interval Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{18:1--18:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.18},
  URN =		{urn:nbn:de:0030-drops-193207},
  doi =		{10.4230/LIPIcs.ISAAC.2023.18},
  annote =	{Keywords: interval graph, proper interval graph, intersection graph, geometric intersection graph, distance oracle, distance query, shortest path query, dynamic graph}
}
Document
Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs

Authors: David Eppstein and Daniel Frishberg

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We give a new rapid mixing result for a natural random walk on the independent sets of a graph G. We show that when G has bounded treewidth, this random walk - known as the Glauber dynamics for the hardcore model - mixes rapidly for all fixed values of the standard parameter λ > 0, giving a simple alternative to existing sampling algorithms for these structures. We also show rapid mixing for analogous Markov chains on dominating sets, b-edge covers, b-matchings, maximal independent sets, and maximal b-matchings. (For b-matchings, maximal independent sets, and maximal b-matchings we also require bounded degree.) Our results imply simpler alternatives to known algorithms for the sampling and approximate counting problems in these graphs. We prove our results by applying a divide-and-conquer framework we developed in a previous paper, as an alternative to the projection-restriction technique introduced by Jerrum, Son, Tetali, and Vigoda. We extend this prior framework to handle chains for which the application of that framework is not straightforward, strengthening existing results by Dyer, Goldberg, and Jerrum and by Heinrich for the Glauber dynamics on q-colorings of graphs of bounded treewidth and bounded degree.

Cite as

David Eppstein and Daniel Frishberg. Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 30:1-30:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.ISAAC.2023.30,
  author =	{Eppstein, David and Frishberg, Daniel},
  title =	{{Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{30:1--30:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.30},
  URN =		{urn:nbn:de:0030-drops-193324},
  doi =		{10.4230/LIPIcs.ISAAC.2023.30},
  annote =	{Keywords: Glauber dynamics, mixing time, projection-restriction, multicommodity flow}
}
Document
Accelerating Self-Assembly of Crisscross Slat Systems

Authors: David Doty, Hunter Fleming, Daniel Hader, Matthew J. Patitz, and Lukas A. Vaughan

Published in: LIPIcs, Volume 276, 29th International Conference on DNA Computing and Molecular Programming (DNA 29) (2023)


Abstract
We present an abstract model of self-assembly of systems composed of "crisscross slats", which have been experimentally implemented as a single-stranded piece of DNA [Minev et al., 2021] or as a complete DNA origami structure [Wintersinger et al., 2022]. We then introduce a more physically realistic "kinetic" model and show how important constants in the model were derived and tuned, and compare simulation-based results to experimental results [Minev et al., 2021; Wintersinger et al., 2022]. Using these models, we show how we can apply optimizations to designs of slat systems in order to lower the numbers of unique slat types required to build target structures. In general, we apply two types of techniques to achieve greatly reduced numbers of slat types. Similar to the experimental work implementing DNA origami-based slats, in our designs the slats oriented in horizontal and vertical directions are each restricted to their own plane and sets of them overlap each other in square regions which we refer to as macrotiles. Our first technique extends their previous work of reusing slat types within macrotiles and requires analyses of binding domain patterns to determine the potential for errors consisting of incorrect slat types attaching at undesired translations and reflections. The second technique leverages the power of algorithmic self-assembly to efficiently reuse entire macrotiles which self-assemble in patterns following designed algorithms that dictate the dimensions and patterns of growth. Using these designs, we demonstrate that in kinetic simulations the systems with reduced numbers of slat types self-assemble more quickly than those with greater numbers. This provides evidence that such optimizations will also result in greater assembly speeds in experimental systems. Furthermore, the reduced numbers of slat types required have the potential to vastly reduce the cost and number of lab steps for crisscross assembly experiments.

Cite as

David Doty, Hunter Fleming, Daniel Hader, Matthew J. Patitz, and Lukas A. Vaughan. Accelerating Self-Assembly of Crisscross Slat Systems. In 29th International Conference on DNA Computing and Molecular Programming (DNA 29). Leibniz International Proceedings in Informatics (LIPIcs), Volume 276, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{doty_et_al:LIPIcs.DNA.29.7,
  author =	{Doty, David and Fleming, Hunter and Hader, Daniel and Patitz, Matthew J. and Vaughan, Lukas A.},
  title =	{{Accelerating Self-Assembly of Crisscross Slat Systems}},
  booktitle =	{29th International Conference on DNA Computing and Molecular Programming (DNA 29)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-297-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{276},
  editor =	{Chen, Ho-Lin and Evans, Constantine G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.29.7},
  URN =		{urn:nbn:de:0030-drops-187908},
  doi =		{10.4230/LIPIcs.DNA.29.7},
  annote =	{Keywords: DNA origami, self-assembly, kinetic modeling, computational modeling}
}
Document
RANDOM
Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees

Authors: Charilaos Efthymiou, Thomas P. Hayes, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete Δ-regular tree for all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44 we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree Δ. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order λ = O(1/Δ). Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof.

Cite as

Charilaos Efthymiou, Thomas P. Hayes, Daniel Štefankovič, and Eric Vigoda. Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{efthymiou_et_al:LIPIcs.APPROX/RANDOM.2023.33,
  author =	{Efthymiou, Charilaos and Hayes, Thomas P. and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.33},
  URN =		{urn:nbn:de:0030-drops-188589},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.33},
  annote =	{Keywords: MCMC, Mixing Time, Independent Sets, Hard-Core Model, Approximate Counting Algorithms, Sampling Algorithms}
}
Document
Effective Resistances in Non-Expander Graphs

Authors: Dongrun Cai, Xue Chen, and Pan Peng

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Effective resistances are ubiquitous in graph algorithms and network analysis. For an undirected graph G, its effective resistance R_G(s,t) between two vertices s and t is defined as the equivalent resistance between s and t if G is thought of as an electrical network with unit resistance on each edge. If we use L_G to denote the Laplacian matrix of G and L_G^† to denote its pseudo-inverse, we have R_G(s,t) = (𝟏_s-𝟏_t)^⊤ L^† (𝟏_s-𝟏_t) such that classical Laplacian solvers [Daniel A. Spielman and Shang{-}Hua Teng, 2014] provide almost-linear time algorithms to approximate R_G(s,t). In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair s and t. We consider the classical adjacency list model [Ron, 2019] for local algorithms. While recent works [Andoni et al., 2018; Peng et al., 2021; Li and Sachdeva, 2023] have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of n vertices and m edges: 1) It needs Ω(n) queries to obtain 1.01-approximations of the effective resistance of an adjacent pair s and t, even for graphs of degree at most 3 except s and t. 2) For graphs of degree at most d and any parameter 𝓁, it needs Ω(m/𝓁) queries to obtain c ⋅ min{d,𝓁}-approximations where c > 0 is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time (1+ε)-approximation algorithm for graphs of degree 2 except the pair s and t. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.

Cite as

Dongrun Cai, Xue Chen, and Pan Peng. Effective Resistances in Non-Expander Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.ESA.2023.29,
  author =	{Cai, Dongrun and Chen, Xue and Peng, Pan},
  title =	{{Effective Resistances in Non-Expander Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.29},
  URN =		{urn:nbn:de:0030-drops-186823},
  doi =		{10.4230/LIPIcs.ESA.2023.29},
  annote =	{Keywords: Sublinear Time Algorithm, Effective Resistance, Leverage Scores, Matrix Perturbation}
}
Document
Fast Map Matching with Vertex-Monotone Fréchet Distance

Authors: Daniel Chen, Christian Sommer, and Daniel Wolleb

Published in: OASIcs, Volume 96, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)


Abstract
We study a generalization for map matching algorithms that includes both geometric approaches such as the Fréchet distance and global weight approaches such as those typically used by Hidden Markov Models. Through this perspective, we discovered an efficient map matching algorithm with respect to the vertex-monotone Fréchet distance while using a heuristic tie-breaker inspired by global weight methods. While the classical Fréchet distance requires parameterizations to be monotone, the vertex-monotone Fréchet distance allows backtracking within edges. Our analysis and experimental evaluations show that relaxing the monotonicity constraint enables significantly faster algorithms without significantly altering the resulting map matched paths.

Cite as

Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast Map Matching with Vertex-Monotone Fréchet Distance. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics (OASIcs), Volume 96, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:OASIcs.ATMOS.2021.10,
  author =	{Chen, Daniel and Sommer, Christian and Wolleb, Daniel},
  title =	{{Fast Map Matching with Vertex-Monotone Fr\'{e}chet Distance}},
  booktitle =	{21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
  pages =	{10:1--10:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-213-6},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{96},
  editor =	{M\"{u}ller-Hannemann, Matthias and Perea, Federico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.10},
  URN =		{urn:nbn:de:0030-drops-148794},
  doi =		{10.4230/OASIcs.ATMOS.2021.10},
  annote =	{Keywords: Fr\'{e}chet distance, map matching, minimum bottleneck path}
}
Document
RANDOM
The Swendsen-Wang Dynamics on Trees

Authors: Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The Swendsen-Wang algorithm is a sophisticated, widely-used Markov chain for sampling from the Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult to analyze, due in part to the global nature of its updates. We present optimal bounds on the convergence rate of the Swendsen-Wang algorithm for the complete d-ary tree. Our bounds extend to the non-uniqueness region and apply to all boundary conditions. We show that the spatial mixing conditions known as Variance Mixing and Entropy Mixing, introduced in the study of local Markov chains by Martinelli et al. (2003), imply Ω(1) spectral gap and O(log n) mixing time, respectively, for the Swendsen-Wang dynamics on the d-ary tree. We also show that these bounds are asymptotically optimal. As a consequence, we establish Θ(log n) mixing for the Swendsen-Wang dynamics for all boundary conditions throughout the tree uniqueness region; in fact, our bounds hold beyond the uniqueness threshold for the Ising model, and for the q-state Potts model when q is small with respect to d. Our proofs feature a novel spectral view of the Variance Mixing condition inspired by several recent rapid mixing results on high-dimensional expanders and utilize recent work on block factorization of entropy under spatial mixing conditions.

Cite as

Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda. The Swendsen-Wang Dynamics on Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 43:1-43:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blanca_et_al:LIPIcs.APPROX/RANDOM.2021.43,
  author =	{Blanca, Antonio and Chen, Zongchen and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{The Swendsen-Wang Dynamics on Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{43:1--43:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.43},
  URN =		{urn:nbn:de:0030-drops-147366},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.43},
  annote =	{Keywords: Markov Chains, mixing times, Ising and Potts models, Swendsen-Wang dynamics, trees}
}
Document
AWLCO: All-Window Length Co-Occurrence

Authors: Joshua Sobel, Noah Bertram, Chen Ding, Fatemeh Nargesian, and Daniel Gildea

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
Analyzing patterns in a sequence of events has applications in text analysis, computer programming, and genomics research. In this paper, we consider the all-window-length analysis model which analyzes a sequence of events with respect to windows of all lengths. We study the exact co-occurrence counting problem for the all-window-length analysis model. Our first algorithm is an offline algorithm that counts all-window-length co-occurrences by performing multiple passes over a sequence and computing single-window-length co-occurrences. This algorithm has the time complexity O(n) for each window length and thus a total complexity of O(n²) and the space complexity O(|I|) for a sequence of size n and an itemset of size |I|. We propose AWLCO, an online algorithm that computes all-window-length co-occurrences in a single pass with the time complexity of O(n) and space complexity of O(√{n|I|}), assuming perfect hashing. Following this, we generalize our use case to patterns in which we propose an algorithm that computes all-window-length co-occurrence with time complexity O(n|I|), assuming perfect hashing, with an additional pre-processing step and space complexity O(√{n|I|}+|I|), plus the overhead of the Aho-Corasick algorithm [Aho and Corasick, 1975].

Cite as

Joshua Sobel, Noah Bertram, Chen Ding, Fatemeh Nargesian, and Daniel Gildea. AWLCO: All-Window Length Co-Occurrence. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 24:1-24:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{sobel_et_al:LIPIcs.CPM.2021.24,
  author =	{Sobel, Joshua and Bertram, Noah and Ding, Chen and Nargesian, Fatemeh and Gildea, Daniel},
  title =	{{AWLCO: All-Window Length Co-Occurrence}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{24:1--24:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.24},
  URN =		{urn:nbn:de:0030-drops-139759},
  doi =		{10.4230/LIPIcs.CPM.2021.24},
  annote =	{Keywords: Itemsets, Data Sequences, Co-occurrence}
}
Document
A Graphical User Interface Framework for Formal Verification

Authors: Edward W. Ayers, Mateja Jamnik, and W. T. Gowers

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
We present the "ProofWidgets" framework for implementing general user interfaces (UIs) within an interactive theorem prover. The framework uses web technology and functional reactive programming, as well as metaprogramming features of advanced interactive theorem proving (ITP) systems to allow users to create arbitrary interactive UIs for representing the goal state. Users of the framework can create GUIs declaratively within the ITP’s metaprogramming language, without having to develop in multiple languages and without coordinated changes across multiple projects, which improves development time for new designs of UI. The ProofWidgets framework also allows UIs to make use of the full context of the theorem prover and the specialised libraries that ITPs offer, such as methods for dealing with expressions and tactics. The framework includes an extensible structured pretty-printing engine that enables advanced interaction with expressions such as interactive term rewriting. We exemplify the framework with an implementation for the https://leanprover-community.github.io. The framework is already in use by hundreds of contributors to the Lean mathematical library.

Cite as

Edward W. Ayers, Mateja Jamnik, and W. T. Gowers. A Graphical User Interface Framework for Formal Verification. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ayers_et_al:LIPIcs.ITP.2021.4,
  author =	{Ayers, Edward W. and Jamnik, Mateja and Gowers, W. T.},
  title =	{{A Graphical User Interface Framework for Formal Verification}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.4},
  URN =		{urn:nbn:de:0030-drops-138996},
  doi =		{10.4230/LIPIcs.ITP.2021.4},
  annote =	{Keywords: User Interfaces, ITP}
}
Document
Fast Algorithms for General Spin Systems on Bipartite Expanders

Authors: Andreas Galanis, Leslie Ann Goldberg, and James Stewart

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
A spin system is a framework in which the vertices of a graph are assigned spins from a finite set. The interactions between neighbouring spins give rise to weights, so a spin assignment can also be viewed as a weighted graph homomorphism. The problem of approximating the partition function (the aggregate weight of spin assignments) or of sampling from the resulting probability distribution is typically intractable for general graphs. In this work, we consider arbitrary spin systems on bipartite expander Δ-regular graphs, including the canonical class of bipartite random Δ-regular graphs. We develop fast approximate sampling and counting algorithms for general spin systems whenever the degree and the spectral gap of the graph are sufficiently large. Our approach generalises the techniques of Jenssen et al. and Chen et al. by showing that typical configurations on bipartite expanders correspond to "bicliques" of the spin system; then, using suitable polymer models, we show how to sample such configurations and approximate the partition function in Õ(n²) time, where n is the size of the graph.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Algorithms for General Spin Systems on Bipartite Expanders. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.MFCS.2020.37,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Stewart, James},
  title =	{{Fast Algorithms for General Spin Systems on Bipartite Expanders}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.37},
  URN =		{urn:nbn:de:0030-drops-127049},
  doi =		{10.4230/LIPIcs.MFCS.2020.37},
  annote =	{Keywords: bipartite expanders, approximate counting, spin systems}
}
Document
The Parameterized Complexity of Guarding Almost Convex Polygons

Authors: Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
The Art Gallery problem is a fundamental visibility problem in Computational Geometry. The input consists of a simple polygon P, (possibly infinite) sets G and C of points within P, and an integer k; the task is to decide if at most k guards can be placed on points in G so that every point in C is visible to at least one guard. In the classic formulation of Art Gallery, G and C consist of all the points within P. Other well-known variants restrict G and C to consist either of all the points on the boundary of P or of all the vertices of P. Recently, three new important discoveries were made: the above mentioned variants of Art Gallery are all W[1]-hard with respect to k [Bonnet and Miltzow, ESA'16], the classic variant has an O(log k)-approximation algorithm [Bonnet and Miltzow, SoCG'17], and it may require irrational guards [Abrahamsen et al., SoCG'17]. Building upon the third result, the classic variant and the case where G consists only of all the points on the boundary of P were both shown to be ∃ℝ-complete [Abrahamsen et al., STOC'18]. Even when both G and C consist only of all the points on the boundary of P, the problem is not known to be in NP. Given the first discovery, the following question was posed by Giannopoulos [Lorentz Center Workshop, 2016]: Is Art Gallery FPT with respect to r, the number of reflex vertices? In light of the developments above, we focus on the variant where G and C consist of all the vertices of P, called Vertex-Vertex Art Gallery. Apart from being a variant of Art Gallery, this case can also be viewed as the classic Dominating Set problem in the visibility graph of a polygon. In this article, we show that the answer to the question by Giannopoulos is positive: Vertex-Vertex Art Gallery is solvable in time r^O(r²)n^O(1). Furthermore, our approach extends to assert that Vertex-Boundary Art Gallery and Boundary-Vertex Art Gallery are both FPT as well. To this end, we utilize structural properties of "almost convex polygons" to present a two-stage reduction from Vertex-Vertex Art Gallery to a new constraint satisfaction problem (whose solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.

Cite as

Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. The Parameterized Complexity of Guarding Almost Convex Polygons. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.SoCG.2020.3,
  author =	{Agrawal, Akanksha and Knudsen, Kristine V. K. and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav},
  title =	{{The Parameterized Complexity of Guarding Almost Convex Polygons}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{3:1--3:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.3},
  URN =		{urn:nbn:de:0030-drops-121614},
  doi =		{10.4230/LIPIcs.SoCG.2020.3},
  annote =	{Keywords: Art Gallery, Reflex vertices, Monotone 2-CSP, Parameterized Complexity, Fixed Parameter Tractability}
}
Document
Dimensionality Reduction for k-Distance Applied to Persistent Homology

Authors: Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Given a set P of n points and a constant k, we are interested in computing the persistent homology of the Čech filtration of P for the k-distance, and investigate the effectiveness of dimensionality reduction for this problem, answering an open question of Sheehy [Proc. SoCG, 2014]. We show that any linear transformation that preserves pairwise distances up to a (1±ε) multiplicative factor, must preserve the persistent homology of the Čech filtration up to a factor of (1-ε)^{-1}. Our results also show that the Vietoris-Rips and Delaunay filtrations for the k-distance, as well as the Čech filtration for the approximate k-distance of Buchet et al. are preserved up to a (1±ε) factor. We also prove extensions of our main theorem, for point sets (i) lying in a region of bounded Gaussian width or (ii) on a low-dimensional manifold, obtaining the target dimension bounds of Lotz [Proc. Roy. Soc. , 2019] and Clarkson [Proc. SoCG, 2008 ] respectively.

Cite as

Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz. Dimensionality Reduction for k-Distance Applied to Persistent Homology. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{arya_et_al:LIPIcs.SoCG.2020.10,
  author =	{Arya, Shreya and Boissonnat, Jean-Daniel and Dutta, Kunal and Lotz, Martin},
  title =	{{Dimensionality Reduction for k-Distance Applied to Persistent Homology}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.10},
  URN =		{urn:nbn:de:0030-drops-121682},
  doi =		{10.4230/LIPIcs.SoCG.2020.10},
  annote =	{Keywords: Dimensionality reduction, Johnson-Lindenstrauss lemma, Topological Data Analysis, Persistent Homology, k-distance, distance to measure}
}
  • Refine by Author
  • 3 Boissonnat, Jean-Daniel
  • 3 Lokshtanov, Daniel
  • 3 Vigoda, Eric
  • 2 Chen, Xue
  • 2 Frishberg, Daniel
  • Show More...

  • Refine by Classification
  • 8 Theory of computation → Computational geometry
  • 5 Theory of computation → Design and analysis of algorithms
  • 3 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Random walks and Markov chains
  • 3 Theory of computation → Streaming, sublinear and near linear time algorithms
  • Show More...

  • Refine by Keyword
  • 2 Computational Topology
  • 2 Markov Chains
  • 2 PageRank
  • 2 Parameterized Complexity
  • 2 Persistent Homology
  • Show More...

  • Refine by Type
  • 31 document

  • Refine by Publication Year
  • 9 2020
  • 5 2023
  • 4 2021
  • 3 2007
  • 3 2024
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail