6 Search Results for "Chen, Tzu-Chun"


Document
On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Authors: Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We consider the min-max graph balancing problem with strict negative correlation (SNC) constraints. The graph balancing problem arises as an equivalent formulation of the classic unrelated machine scheduling problem, where we are given a hypergraph G = (V,E) with vertex-dependent edge weight function p: E×V ↦ ℤ^{≥0} that represents the processing time of the edges (jobs). The SNC constraints, which are given as edge subsets C_1,C_2,…,C_k, require that the edges in the same subset cannot be assigned to the same vertex at the same time. Under these constraints, the goal is to compute an edge orientation (assignment) that minimizes the maximum workload of the vertices. In this paper, we conduct a general study on the approximability of this problem. First, we show that, in the presence of SNC constraints, the case with max_{e ∈ E} |e| = max_i |C_i| = 2 is the only case for which approximation solutions can be obtained. Further generalization on either direction, e.g., max_{e ∈ E} |e| or max_i |C_i|, will directly make computing a feasible solution an NP-complete problem to solve. Then, we present a 2-approximation algorithm for the case with max_{e ∈ E} |e| = max_i |C_i| = 2, based on a set of structural simplifications and a tailored assignment LP for this problem. We note that our approach is general and can be applied to similar settings, e.g., scheduling with SNC constraints to minimize the weighted completion time, to obtain similar approximation guarantees. Further cases are discussed to describe the landscape of the approximability of this prbolem. For the case with |V| ≤ 2, which is already known to be NP-hard, we present a fully-polynomial time approximation scheme (FPTAS). On the other hand, we show that the problem is at least as hard as vertex cover to approximate when |V| ≥ 3.

Cite as

Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao. On Min-Max Graph Balancing with Strict Negative Correlation Constraints. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 50:1-50:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kuo_et_al:LIPIcs.ISAAC.2023.50,
  author =	{Kuo, Ting-Yu and Chen, Yu-Han and Frosini, Andrea and Hsieh, Sun-Yuan and Tsai, Shi-Chun and Kao, Mong-Jen},
  title =	{{On Min-Max Graph Balancing with Strict Negative Correlation Constraints}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{50:1--50:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.50},
  URN =		{urn:nbn:de:0030-drops-193524},
  doi =		{10.4230/LIPIcs.ISAAC.2023.50},
  annote =	{Keywords: Unrelated Scheduling, Graph Balancing, Strict Correlation Constraints}
}
Document
Improving the Bounds of the Online Dynamic Power Management Problem

Authors: Ya-Chun Liang, Kazuo Iwama, and Chung-Shou Liao

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We investigate the power-down mechanism which decides when a machine transitions between states such that the total energy consumption, characterized by execution cost, idle cost and switching cost, is minimized. In contrast to most of the previous studies on the offline model, we focus on the online model in which a sequence of jobs with their release time, execution time and deadline, arrive in an online fashion. More precisely, we exploit a different switching on and off strategy and present an upper bound of 3, and further show a lower bound of 2.1, in a dual-machine model, introduced by Chen et al. in 2014 [STACS 2014: 226-238], both of which beat the currently best result.

Cite as

Ya-Chun Liang, Kazuo Iwama, and Chung-Shou Liao. Improving the Bounds of the Online Dynamic Power Management Problem. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{liang_et_al:LIPIcs.ISAAC.2022.28,
  author =	{Liang, Ya-Chun and Iwama, Kazuo and Liao, Chung-Shou},
  title =	{{Improving the Bounds of the Online Dynamic Power Management Problem}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.28},
  URN =		{urn:nbn:de:0030-drops-173138},
  doi =		{10.4230/LIPIcs.ISAAC.2022.28},
  annote =	{Keywords: Online algorithm, Energy scheduling, Dynamic power management}
}
Document
Tight Competitive Analyses of Online Car-Sharing Problems

Authors: Ya-Chun Liang, Kuan-Yun Lai, Ho-Lin Chen, and Kazuo Iwama

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
The car-sharing problem, proposed by Luo, Erlebach and Xu in 2018, mainly focuses on an online model in which there are two locations: 0 and 1, and k total cars. Each request which specifies its pick-up time and pick-up location (among 0 and 1, and the other is the drop-off location) is released in each stage a fixed amount of time before its specified start (i.e. pick-up) time. The time between the booking (i.e. released) time and the start time is enough to move empty cars between 0 and 1 for relocation if they are not used in that stage. The model, called kS2L-F, assumes that requests in each stage arrive sequentially regardless of the same booking time and the decision (accept or reject) must be made immediately. The goal is to accept as many requests as possible. In spite of only two locations, the analysis does not seem easy and the (tight) competitive ratio (CR) is only known to be 2.0 for k = 2 and 1.5 for a restricted value of k, i.e., a multiple of three. In this paper, we remove all the holes of unknown CR’s; namely we prove that the CR is 2k/(k + ⌊k/3⌋) for all k ≥ 2. Furthermore, if the algorithm can delay its decision until all requests have come in each stage, the CR is improved to roughly 4/3. We can take this advantage even further, precisely we can achieve a CR of (2+R)/3 if the number of requests in each stage is at most Rk, 1 ≤ R ≤ 2, where we do not have to know the value of R in advance. Finally we demonstrate that randomization also helps to get (slightly) better CR’s.

Cite as

Ya-Chun Liang, Kuan-Yun Lai, Ho-Lin Chen, and Kazuo Iwama. Tight Competitive Analyses of Online Car-Sharing Problems. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{liang_et_al:LIPIcs.ISAAC.2021.50,
  author =	{Liang, Ya-Chun and Lai, Kuan-Yun and Chen, Ho-Lin and Iwama, Kazuo},
  title =	{{Tight Competitive Analyses of Online Car-Sharing Problems}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.50},
  URN =		{urn:nbn:de:0030-drops-154835},
  doi =		{10.4230/LIPIcs.ISAAC.2021.50},
  annote =	{Keywords: Car-sharing, Competitive analysis, On-line scheduling, Randomized algorithm}
}
Document
A Dichotomy Result for Cyclic-Order Traversing Games

Authors: Yen-Ting Chen, Meng-Tsung Tsai, and Shi-Chun Tsai

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Traversing game is a two-person game played on a connected undirected simple graph with a source node and a destination node. A pebble is placed on the source node initially and then moves autonomously according to some rules. Alice is the player who wants to set up rules for each node to determine where to forward the pebble while the pebble reaches the node, so that the pebble can reach the destination node. Bob is the second player who tries to deter Alice's effort by removing edges. Given access to Alice's rules, Bob can remove as many edges as he likes, while retaining the source and destination nodes connected. Under the guide of Alice's rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game; otherwise the pebble enters an endless loop without passing through the destination node, then Bob wins. We assume that Alice and Bob both play optimally. We study the problem: When will Alice have a winning strategy? This actually models a routing recovery problem in Software Defined Networking in which some links may be broken. In this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing games. We also give a linear-time algorithm to find the corresponding winning strategy, if one exists.

Cite as

Yen-Ting Chen, Meng-Tsung Tsai, and Shi-Chun Tsai. A Dichotomy Result for Cyclic-Order Traversing Games. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 29:1-29:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2018.29,
  author =	{Chen, Yen-Ting and Tsai, Meng-Tsung and Tsai, Shi-Chun},
  title =	{{A Dichotomy Result for Cyclic-Order Traversing Games}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{29:1--29:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.29},
  URN =		{urn:nbn:de:0030-drops-99775},
  doi =		{10.4230/LIPIcs.ISAAC.2018.29},
  annote =	{Keywords: st-planar graphs, biconnectivity, fault-tolerant routing algorithms, software defined network}
}
Document
Mixin Composition Synthesis Based on Intersection Types

Authors: Jan Bessai, Andrej Dudenhefner, Boris Düdder, Tzu-Chun Chen, Ugo de’Liguoro, and Jakob Rehof

Published in: LIPIcs, Volume 38, 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)


Abstract
We present a method for synthesizing compositions of mixins using type inhabitation in intersection types. First, recursively defined classes and mixins, which are functions over classes, are expressed as terms in a lambda calculus with records. Intersection types with records and record-merge are used to assign meaningful types to these terms without resorting to recursive types. Second, typed terms are translated to a repository of typed combinators. We show a relation between record types with record-merge and intersection types with constructors. This relation is used to prove soundness and partial completeness of the translation with respect to mixin composition synthesis. Furthermore, we demonstrate how a translated repository and goal type can be used as input to an existing framework for composition synthesis in bounded combinatory logic via type inhabitation. The computed result corresponds to a mixin composition typed by the goal type.

Cite as

Jan Bessai, Andrej Dudenhefner, Boris Düdder, Tzu-Chun Chen, Ugo de’Liguoro, and Jakob Rehof. Mixin Composition Synthesis Based on Intersection Types. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 38, pp. 76-91, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bessai_et_al:LIPIcs.TLCA.2015.76,
  author =	{Bessai, Jan and Dudenhefner, Andrej and D\"{u}dder, Boris and Chen, Tzu-Chun and de’Liguoro, Ugo and Rehof, Jakob},
  title =	{{Mixin Composition Synthesis Based on Intersection Types}},
  booktitle =	{13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)},
  pages =	{76--91},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-87-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{38},
  editor =	{Altenkirch, Thorsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TLCA.2015.76},
  URN =		{urn:nbn:de:0030-drops-51563},
  doi =		{10.4230/LIPIcs.TLCA.2015.76},
  annote =	{Keywords: Record Calculus, Combinatory Logic, Type Inhabitation, Mixin, Intersection Type}
}
Document
09181 Working Group on Hybridization between R&S, DoE and Optimization

Authors: Chun-Hung Chen, Liu Hong, Paul B. Kantor, David P. Morton, Juta Pichitlamken, and Matthias Seeger

Published in: Dagstuhl Seminar Proceedings, Volume 9181, Sampling-based Optimization in the Presence of Uncertainty (2009)


Abstract
This is the report of the working group on the relation between, or hybrid combination of design experiment optimization and R&S. The rapporteur, Paul Kantor, learned a great deal at the conference which he summarized by sharing the cartoon shown here. ("A student asking the teacher'... may i be excused, my is full" (from a 1986 cartoon by Gary Larson) - omitted here for copyright reasons).

Cite as

Chun-Hung Chen, Liu Hong, Paul B. Kantor, David P. Morton, Juta Pichitlamken, and Matthias Seeger. 09181 Working Group on Hybridization between R&S, DoE and Optimization. In Sampling-based Optimization in the Presence of Uncertainty. Dagstuhl Seminar Proceedings, Volume 9181, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:DagSemProc.09181.3,
  author =	{Chen, Chun-Hung and Hong, Liu and Kantor, Paul B. and Morton, David P. and Pichitlamken, Juta and Seeger, Matthias},
  title =	{{09181 Working Group on Hybridization between R\&S, DoE and Optimization}},
  booktitle =	{Sampling-based Optimization in the Presence of Uncertainty},
  pages =	{1--14},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9181},
  editor =	{J\"{u}rgen Branke and Barry L. Nelson and Warren Buckler Powell and Thomas J. Santner},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.09181.3},
  URN =		{urn:nbn:de:0030-drops-21172},
  doi =		{10.4230/DagSemProc.09181.3},
  annote =	{Keywords: }
}
  • Refine by Author
  • 2 Iwama, Kazuo
  • 2 Liang, Ya-Chun
  • 2 Tsai, Shi-Chun
  • 1 Bessai, Jan
  • 1 Chen, Chun-Hung
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Design and analysis of algorithms
  • 1 Mathematics of computing → Graph theory
  • 1 Networks → Network reliability
  • 1 Theory of computation → Scheduling algorithms

  • Refine by Keyword
  • 1 Car-sharing
  • 1 Combinatory Logic
  • 1 Competitive analysis
  • 1 Dynamic power management
  • 1 Energy scheduling
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 1 2009
  • 1 2015
  • 1 2018
  • 1 2021
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail