7 Search Results for "Cohen, Shir"


Document
Brief Announcement
Brief Announcement: Subquadratic Multivalued Asynchronous Byzantine Agreement WHP

Authors: Shir Cohen and Idit Keidar

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
There have been several reductions from multivalued consensus to binary consensus over the past 20 years. To the best of our knowledge, none of them solved it for Byzantine asynchronous settings. In this short paper, we close this gap. Moreover, we do so in subquadratic communication, using newly developed subquadratic binary Byzantine Agreement techniques.

Cite as

Shir Cohen and Idit Keidar. Brief Announcement: Subquadratic Multivalued Asynchronous Byzantine Agreement WHP. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 39:1-39:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.DISC.2023.39,
  author =	{Cohen, Shir and Keidar, Idit},
  title =	{{Brief Announcement: Subquadratic Multivalued Asynchronous Byzantine Agreement WHP}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{39:1--39:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.39},
  URN =		{urn:nbn:de:0030-drops-191658},
  doi =		{10.4230/LIPIcs.DISC.2023.39},
  annote =	{Keywords: Byzantine agreement, subquadratic communication, fault tolerance in distributed systems}
}
Document
Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Authors: Shir Cohen, Idit Keidar, and Alexander Spiegelman

Published in: LIPIcs, Volume 253, 26th International Conference on Principles of Distributed Systems (OPODIS 2022)


Abstract
Byzantine Agreement (BA) is a key component in many distributed systems. While Dolev and Reischuk have proven a long time ago that quadratic communication complexity is necessary for worst-case runs, the question of what can be done in practically common runs with fewer failures remained open. In this paper we present the first Byzantine Broadcast algorithm with O(n(f+1)) communication complexity in a model with resilience of n = 2t+1, where 0 ≤ f ≤ t is the actual number of process failures in a run. And for BA with strong unanimity, we present the first optimal-resilience algorithm that has linear communication complexity in the failure-free case and a quadratic cost otherwise.

Cite as

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 253, pp. 18:1-18:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.OPODIS.2022.18,
  author =	{Cohen, Shir and Keidar, Idit and Spiegelman, Alexander},
  title =	{{Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.18},
  URN =		{urn:nbn:de:0030-drops-176385},
  doi =		{10.4230/LIPIcs.OPODIS.2022.18},
  annote =	{Keywords: Byzantine Agreement, Byzantine Broadcast, Adaptive communication}
}
Document
Track A: Algorithms, Complexity and Games
Expander Random Walks: The General Case and Limitations

Authors: Gil Cohen, Dor Minzer, Shir Peleg, Aaron Potechin, and Amnon Ta-Shma

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Cohen, Peri and Ta-Shma [Gil Cohen et al., 2021] considered the following question: Assume the vertices of an expander graph are labelled by ± 1. What "test" functions f : {±1}^t → {±1} can or cannot distinguish t independent samples from those obtained by a random walk? [Gil Cohen et al., 2021] considered only balanced labellings, and proved that for all symmetric functions the distinguishability goes down to zero with the spectral gap λ of the expander G. In addition, [Gil Cohen et al., 2021] show that functions computable by AC⁰ circuits are fooled by expanders with vanishing spectral expansion. We continue the study of this question. We generalize the result to all labelling, not merely balanced ones. We also improve the upper bound on the error of symmetric functions. More importantly, we give a matching lower bound and show a symmetric function with distinguishability going down to zero with λ but not with t. Moreover, we prove a lower bound on the error of functions in AC⁰ in particular, we prove that a random walk on expanders with constant spectral gap does not fool AC⁰.

Cite as

Gil Cohen, Dor Minzer, Shir Peleg, Aaron Potechin, and Amnon Ta-Shma. Expander Random Walks: The General Case and Limitations. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ICALP.2022.43,
  author =	{Cohen, Gil and Minzer, Dor and Peleg, Shir and Potechin, Aaron and Ta-Shma, Amnon},
  title =	{{Expander Random Walks: The General Case and Limitations}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.43},
  URN =		{urn:nbn:de:0030-drops-163849},
  doi =		{10.4230/LIPIcs.ICALP.2022.43},
  annote =	{Keywords: Expander Graphs, Random Walks, Lower Bounds}
}
Document
Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

Authors: Shir Cohen and Idit Keidar

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
We formalize Byzantine linearizability, a correctness condition that specifies whether a concurrent object with a sequential specification is resilient against Byzantine failures. Using this definition, we systematically study Byzantine-tolerant emulations of various objects from registers. We focus on three useful objects- reliable broadcast, atomic snapshot, and asset transfer. We prove that there exist n-process f-resilient Byzantine linearizable implementations of such objects from registers if and only if f < n/2.

Cite as

Shir Cohen and Idit Keidar. Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.DISC.2021.18,
  author =	{Cohen, Shir and Keidar, Idit},
  title =	{{Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.18},
  URN =		{urn:nbn:de:0030-drops-148203},
  doi =		{10.4230/LIPIcs.DISC.2021.18},
  annote =	{Keywords: Byzantine linearizability, concurrent algorithms, snapshot, asset transfer}
}
Document
RANDOM
Candidate Tree Codes via Pascal Determinant Cubes

Authors: Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Tree codes are combinatorial structures introduced by Schulman [Schulman, 1993] as key ingredients in interactive coding schemes. Asymptotically-good tree codes are long known to exist, yet their explicit construction remains a notoriously hard open problem. Even proposing a plausible construction, without the burden of proof, is difficult and the defining tree code property requires structure that remains elusive. To the best of our knowledge, only one candidate appears in the literature, due to Moore and Schulman [Moore and Schulman, 2014]. We put forth a new candidate for an explicit asymptotically-good tree code. Our construction is an extension of the vanishing rate tree code by Cohen-Haeupler-Schulman [Cohen et al., 2018], and its correctness relies on a conjecture that we introduce on certain Pascal determinants indexed by the points of the Boolean hypercube. Furthermore, using the vanishing distance tree code by Gelles et al. [Gelles et al., 2016] enables us to present a construction that relies on an even weaker assumption. We furnish evidence supporting our conjecture through numerical computation, combinatorial arguments from planar path graphs and based on well-studied heuristics from arithmetic geometry.

Cite as

Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate Tree Codes via Pascal Determinant Cubes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 54:1-54:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{benyaacov_et_al:LIPIcs.APPROX/RANDOM.2021.54,
  author =	{Ben Yaacov, Inbar and Cohen, Gil and Narayanan, Anand Kumar},
  title =	{{Candidate Tree Codes via Pascal Determinant Cubes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{54:1--54:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.54},
  URN =		{urn:nbn:de:0030-drops-147474},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.54},
  annote =	{Keywords: Tree codes, Sparse polynomials, Explicit constructions}
}
Document
Invited Talk
Byzantine Agreement and SMR with Sub-Quadratic Message Complexity (Invited Talk)

Authors: Idit Keidar

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
Byzantine Agreement (BA) has been studied for four decades by now, but until recently, has been considered at a fairly small scale. In recent years, however, we begin to see practical use-cases of BA in large-scale systems, which motivates a push for reduced communication complexity. Dolev and Reischuk’s well-known lower bound stipulates that any deterministic algorithm requires Ω(n²) communication in the worst-case, and until fairly recently, almost all randomized algorithms have had at least quadratic complexity as well. This talk will present two new algorithms breaking this barrier. The first part of the talk will consider a fully asynchronous setting, focusing on randomized BA whose safety and liveness guarantees hold with high probability. It will present the first asynchronous Byzantine Agreement algorithm with sub-quadratic communication complexity. This algorithm exploits VRF-based committee sampling, which it adapts for the asynchronous model. The second part of the talk will consider the eventually synchronous model, where BA and State Machine Replication (SMR) can be solved with deterministic safety and liveness guarantees. In this context, randomization is used in order to reduce the expected communication complexity. The talk will present an algorithm for round synchronization, which is a building block for BA and SMR and constitutes the main performance bottleneck therein. It will present an algorithm that, for the first time, achieves round synchronization with expected linear message complexity and expected constant latency. Existing protocols can use this round synchronization algorithm to solve Byzantine SMR with the same asymptotic performance. The first part of the talk is based on joint work with Shir Cohen and Alexander Spiegelman, and the second part of the talk is based on joint work with Oded Naor.

Cite as

Idit Keidar. Byzantine Agreement and SMR with Sub-Quadratic Message Complexity (Invited Talk). In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{keidar:LIPIcs.OPODIS.2020.2,
  author =	{Keidar, Idit},
  title =	{{Byzantine Agreement and SMR with Sub-Quadratic Message Complexity}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.2},
  URN =		{urn:nbn:de:0030-drops-134874},
  doi =		{10.4230/LIPIcs.OPODIS.2020.2},
  annote =	{Keywords: Distributed Computing, Byzantine Agreement}
}
Document
Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Authors: Shir Cohen, Idit Keidar, and Alexander Spiegelman

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
King and Saia were the first to break the quadratic word complexity bound for Byzantine Agreement in synchronous systems against an adaptive adversary, and Algorand broke this bound with near-optimal resilience (first in the synchronous model and then with eventual-synchrony). Yet the question of asynchronous sub-quadratic Byzantine Agreement remained open. To the best of our knowledge, we are the first to answer this question in the affirmative. A key component of our solution is a shared coin algorithm based on a VRF. A second essential ingredient is VRF-based committee sampling, which we formalize and utilize in the asynchronous model for the first time. Our algorithms work against a delayed-adaptive adversary, which cannot perform after-the-fact removals but has full control of Byzantine processes and full information about communication in earlier rounds. Using committee sampling and our shared coin, we solve Byzantine Agreement with high probability, with a word complexity of Õ(n) and O(1) expected time, breaking the O(n²) bit barrier for asynchronous Byzantine Agreement.

Cite as

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.DISC.2020.25,
  author =	{Cohen, Shir and Keidar, Idit and Spiegelman, Alexander},
  title =	{{Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.25},
  URN =		{urn:nbn:de:0030-drops-131034},
  doi =		{10.4230/LIPIcs.DISC.2020.25},
  annote =	{Keywords: shared coin, Byzantine Agreement, VRF, sub-quadratic consensus protocol}
}
  • Refine by Author
  • 5 Keidar, Idit
  • 4 Cohen, Shir
  • 2 Cohen, Gil
  • 2 Spiegelman, Alexander
  • 1 Ben Yaacov, Inbar
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Distributed algorithms
  • 2 Mathematics of computing → Probabilistic algorithms
  • 2 Theory of computation → Cryptographic primitives
  • 1 Computing methodologies → Distributed algorithms
  • 1 Networks → Network algorithms
  • Show More...

  • Refine by Keyword
  • 3 Byzantine Agreement
  • 1 Adaptive communication
  • 1 Byzantine Broadcast
  • 1 Byzantine agreement
  • 1 Byzantine linearizability
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2021
  • 2 2023
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail