3 Search Results for "D'Osualdo, Emanuele"


Document
Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts

Authors: Felix Stutz

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Multiparty session types (MSTs) provide efficient means to specify and verify asynchronous message-passing systems. For a global type, which specifies all interactions between roles in a system, the implementability problem asks whether there are local specifications for all roles such that their composition is deadlock-free and generates precisely the specified executions. Decidability of the implementability problem is an open question. We answer it positively for global types with sender-driven choice, which allow a sender to send to different receivers upon branching and a receiver to receive from different senders. To achieve this, we generalise results from the domain of high-level message sequence charts (HMSCs). This connection also allows us to comprehensively investigate how HMSC techniques can be adapted to the MST setting. This comprises techniques to make the problem algorithmically more tractable as well as a variant of implementability that may open new design space for MSTs. Inspired by potential performance benefits, we introduce a generalisation of the implementability problem that we, unfortunately, prove to be undecidable.

Cite as

Felix Stutz. Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 32:1-32:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{stutz:LIPIcs.ECOOP.2023.32,
  author =	{Stutz, Felix},
  title =	{{Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{32:1--32:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.32},
  URN =		{urn:nbn:de:0030-drops-182251},
  doi =		{10.4230/LIPIcs.ECOOP.2023.32},
  annote =	{Keywords: Multiparty session types, Verification, Message sequence charts}
}
Document
Invited Talk
Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions (Invited Talk)

Authors: Philippa Gardner

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Scalable verification for concurrent programs with shared memory is a long-standing, difficult problem. In 2004, O'Hearn and Brookes introduced concurrent separation logic to provide compositional reasoning about coarse-grained concurrent programs with synchronisation primitives (Gödel prize, 2016). In 2010, I introduced logical abstraction (the fiction of separation) to CSL, developing the CAP logic for reasoning about fine-grained concurrent programs in general and fine-grained lock algorithms in particular. In one logic, it was possible to provide two-sided specifications of concurrent operations, with formally verified implementations and clients. In 2014, I introduced logical atomicity (the fiction of atomicity) to concurrent separation logics, developing the TaDA logic to capture when individual operations behave atomically. Unlike CAP, where synchronisation primitives leak into the specifications, with TaDA the specifications are "just right" in that they provide more general atomic functions specifications to capture, for example, the full behaviour of lock operations. In 2021, I introduced environment liveness conditions to concurrent separation logics, developing the TaDA Live logic for reasoning compositionally about the termination of blocking fine-grained concurrent programs. The crucial challenge is how to deal with abstract atomic blocking: that is, abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found in, for example, fine-grained spin locks. The fundamental innovation is with the design of abstract specifications that capture this blocking behaviour as liveness assumptions on the environment. In this talk, I will explain this on-going journey in the wonderful world of concurrent separation logics. I will also explain why I have a bright green office chair in the corner of my office, patterned in gold lamé. Many thanks to my fabulous coauthors on concurrent separation logics: Thomas Dinsdale-Young, Emanuele D'Osualdo, Mike Dodds, Azadeh Farzan, Matthew Parkinson, Pedro da Rocha Pinto, Julian Sutherland, Viktor Vafeiadis and more. Suggested Reading: - Peter O'Hearn: Resources, Concurrency and Local Reasoning, Journal of Theoretical Computer Science, Festschrift for John C Reynolds 70th birthday, 2007. - Thomas Dinsdale-Young, Pedro da Rocha Pinto and Philippa Gardner: A Perspective on Specifying and Verifying Concurrent Modules, Journal of Logical and Algebraic Methods in Programming, 2018. - Emanuele D'Osualdo, Azadeh Farzan, Philippa Gardner and Julian Sutherland: TaDA Live: Compositional Reasoning for Termination of Fine-grained Concurrent Programs, ACM Transactions on Programming Languages and Systems (TOPLAS), 2021.

Cite as

Philippa Gardner. Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions (Invited Talk). In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gardner:LIPIcs.CONCUR.2022.2,
  author =	{Gardner, Philippa},
  title =	{{Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.2},
  URN =		{urn:nbn:de:0030-drops-170659},
  doi =		{10.4230/LIPIcs.CONCUR.2022.2},
  annote =	{Keywords: Concurrent separation logic}
}
Document
Decidable Inductive Invariants for Verification of Cryptographic Protocols with Unbounded Sessions

Authors: Emanuele D'Osualdo and Felix Stutz

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We develop a theory of decidable inductive invariants for an infinite-state variant of the Applied πcalc, with applications to automatic verification of stateful cryptographic protocols with unbounded sessions/nonces. Since the problem is undecidable in general, we introduce depth-bounded protocols, a strict generalisation of a class from the literature, for which our decidable analysis is sound and complete. Our core contribution is a procedure to check that an invariant is inductive, which implies that every reachable configuration satisfies it. Our invariants can capture security properties like secrecy, can be inferred automatically, and represent an independently checkable certificate of correctness. We provide a prototype implementation and we report on its performance on some textbook examples.

Cite as

Emanuele D'Osualdo and Felix Stutz. Decidable Inductive Invariants for Verification of Cryptographic Protocols with Unbounded Sessions. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 31:1-31:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dosualdo_et_al:LIPIcs.CONCUR.2020.31,
  author =	{D'Osualdo, Emanuele and Stutz, Felix},
  title =	{{Decidable Inductive Invariants for Verification of Cryptographic Protocols with Unbounded Sessions}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{31:1--31:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.31},
  URN =		{urn:nbn:de:0030-drops-128433},
  doi =		{10.4230/LIPIcs.CONCUR.2020.31},
  annote =	{Keywords: Security Protocols, Infinite-State Verification, Ideal Completions for WSTS}
}
  • Refine by Author
  • 2 Stutz, Felix
  • 1 D'Osualdo, Emanuele
  • 1 Gardner, Philippa

  • Refine by Classification
  • 2 Theory of computation → Concurrency
  • 1 Theory of computation → Program verification

  • Refine by Keyword
  • 1 Concurrent separation logic
  • 1 Ideal Completions for WSTS
  • 1 Infinite-State Verification
  • 1 Message sequence charts
  • 1 Multiparty session types
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2020
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail