4 Search Results for "Dolby, Julian"


Document
Artifact
Static Analysis of Shape in TensorFlow Programs (Artifact)

Authors: Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smaragdakis

Published in: DARTS, Volume 6, Issue 2, Special Issue of the 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
These instructions are intended for using the artifact for our ECOOP'20 paper entitled "Static Analysis of Shape in TensorFlow Programs". They can be used to run Pythia - the tool implementing the paper’s analysis - on the paper’s evaluation set demonstrating bug detection in the most precise configuration of our analysis as well as the precision of the analysis under different configurations.

Cite as

Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smaragdakis. Static Analysis of Shape in TensorFlow Programs (Artifact). In Special Issue of the 34th European Conference on Object-Oriented Programming (ECOOP 2020). Dagstuhl Artifacts Series (DARTS), Volume 6, Issue 2, pp. 6:1-6:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{lagouvardos_et_al:DARTS.6.2.6,
  author =	{Lagouvardos, Sifis and Dolby, Julian and Grech, Neville and Antoniadis, Anastasios and Smaragdakis, Yannis},
  title =	{{Static Analysis of Shape in TensorFlow Programs (Artifact)}},
  pages =	{6:1--6:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2020},
  volume =	{6},
  number =	{2},
  editor =	{Lagouvardos, Sifis and Dolby, Julian and Grech, Neville and Antoniadis, Anastasios and Smaragdakis, Yannis},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.6.2.6},
  URN =		{urn:nbn:de:0030-drops-132035},
  doi =		{10.4230/DARTS.6.2.6},
  annote =	{Keywords: Python, TensorFlow, static analysis, Doop, Wala}
}
Document
Static Analysis of Shape in TensorFlow Programs

Authors: Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smaragdakis

Published in: LIPIcs, Volume 166, 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
Machine learning has been widely adopted in diverse science and engineering domains, aided by reusable libraries and quick development patterns. The TensorFlow library is probably the best-known representative of this trend and most users employ the Python API to its powerful back-end. TensorFlow programs are susceptible to several systematic errors, especially in the dynamic typing setting of Python. We present Pythia, a static analysis that tracks the shapes of tensors across Python library calls and warns of several possible mismatches. The key technical aspects are a close modeling of library semantics with respect to tensor shape, and an identification of violations and error-prone patterns. Pythia is powerful enough to statically detect (with 84.62% precision) 11 of the 14 shape-related TensorFlow bugs in the recent Zhang et al. empirical study - an independent slice of real-world bugs.

Cite as

Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smaragdakis. Static Analysis of Shape in TensorFlow Programs. In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 166, pp. 15:1-15:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lagouvardos_et_al:LIPIcs.ECOOP.2020.15,
  author =	{Lagouvardos, Sifis and Dolby, Julian and Grech, Neville and Antoniadis, Anastasios and Smaragdakis, Yannis},
  title =	{{Static Analysis of Shape in TensorFlow Programs}},
  booktitle =	{34th European Conference on Object-Oriented Programming (ECOOP 2020)},
  pages =	{15:1--15:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-154-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{166},
  editor =	{Hirschfeld, Robert and Pape, Tobias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.15},
  URN =		{urn:nbn:de:0030-drops-131726},
  doi =		{10.4230/LIPIcs.ECOOP.2020.15},
  annote =	{Keywords: Python, TensorFlow, static analysis, Doop, Wala}
}
Document
Tool Insights Paper
MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)

Authors: Linghui Luo, Julian Dolby, and Eric Bodden

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
In the past, many static analyses have been created in academia, but only a few of them have found widespread use in industry. Those analyses which are adopted by developers usually have IDE support in the form of plugins, without which developers have no convenient mechanism to use the analysis. Hence, the key to making static analyses more accessible to developers is to integrate the analyses into IDEs and editors. However, integrating static analyses into IDEs is non-trivial: different IDEs have different UI workflows and APIs, expertise in those matters is required to write such plugins, and analysis experts are not typically familiar with doing this. As a result, especially in academia, most analysis tools are headless and only have command-line interfaces. To make static analyses more usable, we propose MagpieBridge - a general approach to integrating static analyses into IDEs and editors. MagpieBridge reduces the mxn complexity problem of integrating m analyses into n IDEs to m+n complexity because each analysis and type of plugin need be done just once for MagpieBridge itself. We demonstrate our approach by integrating two existing analyses, Ariadne and CogniCrypt, into IDEs; these two analyses illustrate the generality of MagpieBridge, as they are based on different program analysis frameworks - WALA and Soot respectively - for different application areas - machine learning and security - and different programming languages - Python and Java. We show further generality of MagpieBridge by using multiple popular IDEs and editors, such as Eclipse, IntelliJ, PyCharm, Jupyter, Sublime Text and even Emacs and Vim.

Cite as

Linghui Luo, Julian Dolby, and Eric Bodden. MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 21:1-21:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{luo_et_al:LIPIcs.ECOOP.2019.21,
  author =	{Luo, Linghui and Dolby, Julian and Bodden, Eric},
  title =	{{MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{21:1--21:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.21},
  URN =		{urn:nbn:de:0030-drops-108139},
  doi =		{10.4230/LIPIcs.ECOOP.2019.21},
  annote =	{Keywords: IDE, Tool Support, Static Analysis, Language Server Protocol}
}
Document
Synergies among Testing, Verification, and Repair for Concurrent Programs (Dagstuhl Seminar 16201)

Authors: Julian Dolby, Orna Grumberg, Peter Müller, and Omer Tripp

Published in: Dagstuhl Reports, Volume 6, Issue 5 (2016)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16201 "Synergies among Testing, Verification, and Repair for Concurrent Programs". This seminar builds upon, and is inspired by, several past seminars on program testing, verification, repair and combinations thereof. These include Dagstuhl Seminar 13021 "Symbolic Methods in Testing"; Dagstuhl Seminar 13061 "Fault Prediction, Localization and Repair"; Dagstuhl Seminar 14171 "Evaluating Software Verification Systems: Benchmarks and Competitions"; Dagstuhl Seminar 14352 "Next Generation Static Software Analysis Tools"; Dagstuhl Seminar 14442 "Symbolic Execution and Constraint Solving"; and Dagstuhl Seminar 15191 "Compositional Verification Methods for Next-Generation Concurrency". These were held in January 2013; February 2013; April 2014; August 2014; October 2014; and May 2015, respectively. Two notable contributions of Dagstuhl Seminar 16201, which distinguish it from these past seminars, are (i) the focus on concurrent programming, which introduces significant challenges to testing, verification and repair tools, as well as (ii) the goal of identifying and exploiting synergies between the testing, verification and repair research communities in light of common needs and goals.

Cite as

Julian Dolby, Orna Grumberg, Peter Müller, and Omer Tripp. Synergies among Testing, Verification, and Repair for Concurrent Programs (Dagstuhl Seminar 16201). In Dagstuhl Reports, Volume 6, Issue 5, pp. 56-71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{dolby_et_al:DagRep.6.5.56,
  author =	{Dolby, Julian and Grumberg, Orna and M\"{u}ller, Peter and Tripp, Omer},
  title =	{{Synergies among Testing, Verification, and Repair for Concurrent Programs (Dagstuhl Seminar 16201)}},
  pages =	{56--71},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2016},
  volume =	{6},
  number =	{5},
  editor =	{Dolby, Julian and Grumberg, Orna and M\"{u}ller, Peter and Tripp, Omer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.6.5.56},
  URN =		{urn:nbn:de:0030-drops-67203},
  doi =		{10.4230/DagRep.6.5.56},
  annote =	{Keywords: (automatic) bug repair, concurrency bugs, concurrent programming, deductive verification, interactive verification, linearizability, synchronization testing}
}
  • Refine by Author
  • 4 Dolby, Julian
  • 2 Antoniadis, Anastasios
  • 2 Grech, Neville
  • 2 Lagouvardos, Sifis
  • 2 Smaragdakis, Yannis
  • Show More...

  • Refine by Classification
  • 2 Software and its engineering → Compilers
  • 2 Software and its engineering → General programming languages
  • 2 Theory of computation → Program analysis
  • 1 Software and its engineering → Software notations and tools

  • Refine by Keyword
  • 2 Doop
  • 2 Python
  • 2 TensorFlow
  • 2 Wala
  • 2 static analysis
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2020
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail