13 Search Results for "Doumane, Amina"


Document
Syntactically and Semantically Regular Languages of λ-Terms Coincide Through Logical Relations

Authors: Vincent Moreau and Lê Thành Dũng (Tito) Nguyễn

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
A fundamental theme in automata theory is regular languages of words and trees, and their many equivalent definitions. Salvati has proposed a generalization to regular languages of simply typed λ-terms, defined using denotational semantics in finite sets. We provide here some evidence for its robustness. First, we give an equivalent syntactic characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting regular languages of words and syntactic λ-definability. Second, we show that any finitary extensional model of the simply typed λ-calculus, when used in Salvati’s definition, recognizes exactly the same class of languages of λ-terms as the category of finite sets does. The proofs of these two results rely on logical relations and can be seen as instances of a more general construction of a categorical nature, inspired by previous categorical accounts of logical relations using the gluing construction.

Cite as

Vincent Moreau and Lê Thành Dũng (Tito) Nguyễn. Syntactically and Semantically Regular Languages of λ-Terms Coincide Through Logical Relations. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 40:1-40:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{moreau_et_al:LIPIcs.CSL.2024.40,
  author =	{Moreau, Vincent and Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito)},
  title =	{{Syntactically and Semantically Regular Languages of \lambda-Terms Coincide Through Logical Relations}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{40:1--40:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.40},
  URN =		{urn:nbn:de:0030-drops-196831},
  doi =		{10.4230/LIPIcs.CSL.2024.40},
  annote =	{Keywords: regular languages, simple types, denotational semantics, logical relations}
}
Document
Phase Semantics for Linear Logic with Least and Greatest Fixed Points

Authors: Abhishek De, Farzad Jafarrahmani, and Alexis Saurin

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide range of applications and deep connections with several denotational semantics. In phase semantics, one is concerned about the provability of formulas rather than the contents of their proofs (or refutations). Linear logic equipped with the least and greatest fixpoint operators (μMALL) has been an active field of research for the past one and a half decades. Various proof systems are known viz. finitary and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL) to μMALL with explicit (co)induction (i.e. μMALL^{ind}). We introduce a Tait-style system for μMALL called μMALL_ω where proofs are wellfounded but potentially infinitely branching. We study its phase semantics and prove that it does not have the finite model property.

Cite as

Abhishek De, Farzad Jafarrahmani, and Alexis Saurin. Phase Semantics for Linear Logic with Least and Greatest Fixed Points. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 35:1-35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{de_et_al:LIPIcs.FSTTCS.2022.35,
  author =	{De, Abhishek and Jafarrahmani, Farzad and Saurin, Alexis},
  title =	{{Phase Semantics for Linear Logic with Least and Greatest Fixed Points}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{35:1--35:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.35},
  URN =		{urn:nbn:de:0030-drops-174272},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.35},
  annote =	{Keywords: Linear logic, fixed points, phase semantics, closure ordinals, cut elimination}
}
Document
Completeness Theorems for Kleene Algebra with Top

Authors: Damien Pous and Jana Wagemaker

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We prove two completeness results for Kleene algebra with a top element, with respect to languages and binary relations. While the equational theories of those two classes of models coincide over the signature of Kleene algebra, this is no longer the case when we consider an additional constant "top" for the full element. Indeed, the full relation satisfies more laws than the full language, and we show that those additional laws can all be derived from a single additional axiom. We recover that the two equational theories coincide if we slightly generalise the notion of relational model, allowing sub-algebras of relations where top is a greatest element but not necessarily the full relation. We use models of closed languages and reductions in order to prove our completeness results, which are relative to any axiomatisation of the algebra of regular events.

Cite as

Damien Pous and Jana Wagemaker. Completeness Theorems for Kleene Algebra with Top. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{pous_et_al:LIPIcs.CONCUR.2022.26,
  author =	{Pous, Damien and Wagemaker, Jana},
  title =	{{Completeness Theorems for Kleene Algebra with Top}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.26},
  URN =		{urn:nbn:de:0030-drops-170890},
  doi =		{10.4230/LIPIcs.CONCUR.2022.26},
  annote =	{Keywords: Kleene algebra, Hypotheses, Completeness, Closed languages}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Regular Expressions for Tree-Width 2 Graphs

Authors: Amina Doumane

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We propose a syntax of regular expressions, which describes languages of tree-width 2 graphs. We show that these languages correspond exactly to those languages of tree-width 2 graphs, definable in the counting monadic second-order logic (CMSO).

Cite as

Amina Doumane. Regular Expressions for Tree-Width 2 Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{doumane:LIPIcs.ICALP.2022.121,
  author =	{Doumane, Amina},
  title =	{{Regular Expressions for Tree-Width 2 Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.121},
  URN =		{urn:nbn:de:0030-drops-164627},
  doi =		{10.4230/LIPIcs.ICALP.2022.121},
  annote =	{Keywords: Tree width, MSO, Regular expressions}
}
Document
Invited Talk
Non-Axiomatizability of the Equational Theories of Positive Relation Algebras (Invited Talk)

Authors: Amina Doumane

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
In the literature, there are two ways to show that the equational theory of relations over a given signature is not finitely axiomatizable. The first-one is based on games and a construction called Rainbow construction. This method is very technical but it shows a strong result: the equational theory cannot be axiomatized by any finite set of first-order formulas. There is another method, based on a graph characterization of the equational theory of relations, which is easier to get and to understand, but proves a weaker result: the equational theory cannot be axiomatized by any finite set of equations. In this presentation, I will show how to complete the second technique to get the stronger result of non-axiomatizability by first-order formulas.

Cite as

Amina Doumane. Non-Axiomatizability of the Equational Theories of Positive Relation Algebras (Invited Talk). In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doumane:LIPIcs.MFCS.2021.1,
  author =	{Doumane, Amina},
  title =	{{Non-Axiomatizability of the Equational Theories of Positive Relation Algebras}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.1},
  URN =		{urn:nbn:de:0030-drops-144417},
  doi =		{10.4230/LIPIcs.MFCS.2021.1},
  annote =	{Keywords: Relation algebra, Graph homomorphism, Equational theories, First-order logic}
}
Document
Graph Characterization of the Universal Theory of Relations

Authors: Amina Doumane

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
The equational theory of relations can be characterized using graphs and homomorphisms. This result, found independently by Freyd and Scedrov and by Andréka and Bredikhin, shows that the equational theory of relations is decidable. In this paper, we extend this characterization to the whole universal first-order theory of relations. Using our characterization, we show that the positive universal fragment is also decidable.

Cite as

Amina Doumane. Graph Characterization of the Universal Theory of Relations. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 41:1-41:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doumane:LIPIcs.MFCS.2021.41,
  author =	{Doumane, Amina},
  title =	{{Graph Characterization of the Universal Theory of Relations}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{41:1--41:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.41},
  URN =		{urn:nbn:de:0030-drops-144815},
  doi =		{10.4230/LIPIcs.MFCS.2021.41},
  annote =	{Keywords: Relation algebra, Graph homomorphism, Equational theories, First-order logic}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Comparison-Free Polyregular Functions

Authors: Lê Thành Dũng (Tito) Nguyễn, Camille Noûs, and Pierre Pradic

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
This paper introduces a new automata-theoretic class of string-to-string functions with polynomial growth. Several equivalent definitions are provided: a machine model which is a restricted variant of pebble transducers, and a few inductive definitions that close the class of regular functions under certain operations. Our motivation for studying this class comes from another characterization, which we merely mention here but prove elsewhere, based on a λ-calculus with a linear type system. As their name suggests, these comparison-free polyregular functions form a subclass of polyregular functions; we prove that the inclusion is strict. We also show that they are incomparable with HDT0L transductions, closed under usual function composition - but not under a certain "map" combinator - and satisfy a comparison-free version of the pebble minimization theorem. On the broader topic of polynomial growth transductions, we also consider the recently introduced layered streaming string transducers (SSTs), or equivalently k-marble transducers. We prove that a function can be obtained by composing such transducers together if and only if it is polyregular, and that k-layered SSTs (or k-marble transducers) are closed under "map" and equivalent to a corresponding notion of (k+1)-layered HDT0L systems.

Cite as

Lê Thành Dũng (Tito) Nguyễn, Camille Noûs, and Pierre Pradic. Comparison-Free Polyregular Functions. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 139:1-139:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.ICALP.2021.139,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and No\^{u}s, Camille and Pradic, Pierre},
  title =	{{Comparison-Free Polyregular Functions}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{139:1--139:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.139},
  URN =		{urn:nbn:de:0030-drops-142087},
  doi =		{10.4230/LIPIcs.ICALP.2021.139},
  annote =	{Keywords: pebble transducers, HDT0L systems, polyregular functions}
}
Document
Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms

Authors: Amina Doumane and Damien Pous

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We study the equational theories of composition and intersection on binary relations, with or without their associated neutral elements (identity and full relation). Without these constants, the equational theory coincides with that of semilattice-ordered semigroups. We show that the equational theory is no longer finitely based when adding one or the other constant, refuting a conjecture from the literature. Our proofs exploit a characterisation in terms of graphs and homomorphisms, which we show how to adapt in order to capture standard equational theories over the considered signatures.

Cite as

Amina Doumane and Damien Pous. Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.CONCUR.2020.29,
  author =	{Doumane, Amina and Pous, Damien},
  title =	{{Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.29},
  URN =		{urn:nbn:de:0030-drops-128411},
  doi =		{10.4230/LIPIcs.CONCUR.2020.29},
  annote =	{Keywords: Relation algebra, graph homomorphisms, (in)equational theories}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic

Authors: Lê Thành Dũng Nguyễn and Pierre Pradic

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We give a characterization of star-free languages in a λ-calculus with support for non-commutative affine types (in the sense of linear logic), via the algebraic characterization of the former using aperiodic monoids. When the type system is made commutative, we show that we get regular languages instead. A key ingredient in our approach – that it shares with higher-order model checking – is the use of Church encodings for inputs and outputs. Our result is, to our knowledge, the first use of non-commutativity in implicit computational complexity.

Cite as

Lê Thành Dũng Nguyễn and Pierre Pradic. Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 135:1-135:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.ICALP.2020.135,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng and Pradic, Pierre},
  title =	{{Implicit Automata in Typed \lambda-Calculi I: Aperiodicity in a Non-Commutative Logic}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{135:1--135:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.135},
  URN =		{urn:nbn:de:0030-drops-125426},
  doi =		{10.4230/LIPIcs.ICALP.2020.135},
  annote =	{Keywords: Church encodings, ordered linear types, star-free languages}
}
Document
A Complete Axiomatisation of a Fragment of Language Algebra

Authors: Paul Brunet

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We consider algebras of languages over the signature of reversible Kleene lattices, that is the regular operations (empty and unit languages, union, concatenation and Kleene star) together with intersection and mirror image. We provide a complete set of axioms for the equational theory of these algebras. This proof was developed in the proof assistant Coq.

Cite as

Paul Brunet. A Complete Axiomatisation of a Fragment of Language Algebra. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{brunet:LIPIcs.CSL.2020.11,
  author =	{Brunet, Paul},
  title =	{{A Complete Axiomatisation of a Fragment of Language Algebra}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.11},
  URN =		{urn:nbn:de:0030-drops-116546},
  doi =		{10.4230/LIPIcs.CSL.2020.11},
  annote =	{Keywords: Kleene algebra, language algebra, completeness theorem, axiomatisation}
}
Document
Completeness for Identity-free Kleene Lattices

Authors: Amina Doumane and Damien Pous

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and complete for the equational theory of their relational models. Our proof builds on the completeness theorem for Kleene algebra, and on a novel automata construction that makes it possible to extract axiomatic proofs using a Kleene-like algorithm.

Cite as

Amina Doumane and Damien Pous. Completeness for Identity-free Kleene Lattices. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.CONCUR.2018.18,
  author =	{Doumane, Amina and Pous, Damien},
  title =	{{Completeness for Identity-free Kleene Lattices}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.18},
  URN =		{urn:nbn:de:0030-drops-95564},
  doi =		{10.4230/LIPIcs.CONCUR.2018.18},
  annote =	{Keywords: Kleene algebra, Graph languages, Petri Automata, Kleene theorem}
}
Document
Infinitary Proof Theory: the Multiplicative Additive Case

Authors: David Baelde, Amina Doumane, and Alexis Saurin

Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)


Abstract
Infinitary and regular proofs are commonly used in fixed point logics. Being natural intermediate devices between semantics and traditional finitary proof systems, they are commonly found in completeness arguments, automated deduction, verification, etc. However, their proof theory is surprisingly underdeveloped. In particular, very little is known about the computational behavior of such proofs through cut elimination. Taking such aspects into account has unlocked rich developments at the intersection of proof theory and programming language theory. One would hope that extending this to infinitary calculi would lead, e.g., to a better understanding of recursion and corecursion in programming languages. Structural proof theory is notably based on two fundamental properties of a proof system: cut elimination and focalization. The first one is only known to hold for restricted (purely additive) infinitary calculi, thanks to the work of Santocanale and Fortier; the second one has never been studied in infinitary systems. In this paper, we consider the infinitary proof system muMALLi for multiplicative and additive linear logic extended with least and greatest fixed points, and prove these two key results. We thus establish muMALLi as a satisfying computational proof system in itself, rather than just an intermediate device in the study of finitary proof systems.

Cite as

David Baelde, Amina Doumane, and Alexis Saurin. Infinitary Proof Theory: the Multiplicative Additive Case. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{baelde_et_al:LIPIcs.CSL.2016.42,
  author =	{Baelde, David and Doumane, Amina and Saurin, Alexis},
  title =	{{Infinitary Proof Theory: the Multiplicative Additive Case}},
  booktitle =	{25th EACSL Annual Conference on Computer Science Logic (CSL 2016)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-022-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{62},
  editor =	{Talbot, Jean-Marc and Regnier, Laurent},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.42},
  URN =		{urn:nbn:de:0030-drops-65825},
  doi =		{10.4230/LIPIcs.CSL.2016.42},
  annote =	{Keywords: Infinitary proofs, linear logic}
}
Document
Least and Greatest Fixed Points in Ludics

Authors: David Baelde, Amina Doumane, and Alexis Saurin

Published in: LIPIcs, Volume 41, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015)


Abstract
Various logics have been introduced in order to reason over (co)inductive specifications and, through the Curry-Howard correspondence, to study computation over inductive and coinductive data. The logic mu-MALL is one of those logics, extending multiplicative and additive linear logic with least and greatest fixed point operators. In this paper, we investigate the semantics of mu-MALL proofs in (computational) ludics. This framework is built around the notion of design, which can be seen as an analogue of the strategies of game semantics. The infinitary nature of designs makes them particularly well suited for representing computations over infinite data. We provide mu-MALL with a denotational semantics, interpreting proofs by designs and formulas by particular sets of designs called behaviours. Then we prove a completeness result for the class of "essentially finite designs", which are those designs performing a finite computation followed by a copycat. On the way to completeness, we investigate semantic inclusion, proving its decidability (given two formulas, we can decide whether the semantics of one is included in the other's) and completeness (if semantic inclusion holds, the corresponding implication is provable in mu-MALL).

Cite as

David Baelde, Amina Doumane, and Alexis Saurin. Least and Greatest Fixed Points in Ludics. In 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 41, pp. 549-566, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{baelde_et_al:LIPIcs.CSL.2015.549,
  author =	{Baelde, David and Doumane, Amina and Saurin, Alexis},
  title =	{{Least and Greatest Fixed Points in Ludics}},
  booktitle =	{24th EACSL Annual Conference on Computer Science Logic (CSL 2015)},
  pages =	{549--566},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-90-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{41},
  editor =	{Kreutzer, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2015.549},
  URN =		{urn:nbn:de:0030-drops-54374},
  doi =		{10.4230/LIPIcs.CSL.2015.549},
  annote =	{Keywords: proof theory, fixed points, linear logic, ludics, game semantics, completeness, circular proofs, infinitary proof systems}
}
  • Refine by Author
  • 7 Doumane, Amina
  • 3 Pous, Damien
  • 3 Saurin, Alexis
  • 2 Baelde, David
  • 2 Nguyễn, Lê Thành Dũng (Tito)
  • Show More...

  • Refine by Classification
  • 4 Mathematics of computing → Discrete mathematics
  • 3 Theory of computation → Regular languages
  • 2 Theory of computation → Algebraic language theory
  • 2 Theory of computation → Linear logic
  • 1 Theory of computation → Denotational semantics
  • Show More...

  • Refine by Keyword
  • 3 Kleene algebra
  • 3 Relation algebra
  • 2 Equational theories
  • 2 First-order logic
  • 2 Graph homomorphism
  • Show More...

  • Refine by Type
  • 13 document

  • Refine by Publication Year
  • 3 2020
  • 3 2021
  • 3 2022
  • 1 2015
  • 1 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail