2 Search Results for "Elkin, Yury"


Document
APPROX
Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment

Authors: Eden Chlamtáč, Yury Makarychev, and Ali Vakilian

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We provide new approximation algorithms for the Red-Blue Set Cover and Circuit Minimum Monotone Satisfying Assignment (MMSA) problems. Our algorithm for Red-Blue Set Cover achieves Õ(m^{1/3})-approximation improving on the Õ(m^{1/2})-approximation due to Elkin and Peleg (where m is the number of sets). Our approximation algorithm for MMSA_t (for circuits of depth t) gives an Õ(N^{1-δ}) approximation for δ = 1/32^{3-⌈t/2⌉}, where N is the number of gates and variables. No non-trivial approximation algorithms for MMSA_t with t ≥ 4 were previously known. We complement these results with lower bounds for these problems: For Red-Blue Set Cover, we provide a nearly approximation preserving reduction from Min k-Union that gives an ̃Ω(m^{1/4 - ε}) hardness under the Dense-vs-Random conjecture, while for MMSA we sketch a proof that an SDP relaxation strengthened by Sherali-Adams has an integrality gap of N^{1-ε} where ε → 0 as the circuit depth t → ∞.

Cite as

Eden Chlamtáč, Yury Makarychev, and Ali Vakilian. Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chlamtac_et_al:LIPIcs.APPROX/RANDOM.2023.11,
  author =	{Chlamt\'{a}\v{c}, Eden and Makarychev, Yury and Vakilian, Ali},
  title =	{{Approximating Red-Blue Set Cover and Minimum Monotone Satisfying Assignment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.11},
  URN =		{urn:nbn:de:0030-drops-188366},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.11},
  annote =	{Keywords: Red-Blue Set Cover Problem, Circuit Minimum Monotone Satisfying Assignment (MMSA) Problem, LP Rounding}
}
Document
The Mergegram of a Dendrogram and Its Stability

Authors: Yury Elkin and Vitaliy Kurlin

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
This paper extends the key concept of persistence within Topological Data Analysis (TDA) in a new direction. TDA quantifies topological shapes hidden in unorganized data such as clouds of unordered points. In the 0-dimensional case the distance-based persistence is determined by a single-linkage (SL) clustering of a finite set in a metric space. Equivalently, the 0D persistence captures only edge-lengths of a Minimum Spanning Tree (MST). Both SL dendrogram and MST are unstable under perturbations of points. We define the new stable-under-noise mergegram, which outperforms previous isometry invariants on a classification of point clouds by PersLay.

Cite as

Yury Elkin and Vitaliy Kurlin. The Mergegram of a Dendrogram and Its Stability. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 32:1-32:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{elkin_et_al:LIPIcs.MFCS.2020.32,
  author =	{Elkin, Yury and Kurlin, Vitaliy},
  title =	{{The Mergegram of a Dendrogram and Its Stability}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{32:1--32:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.32},
  URN =		{urn:nbn:de:0030-drops-127281},
  doi =		{10.4230/LIPIcs.MFCS.2020.32},
  annote =	{Keywords: clustering dendrogram, topological data analysis, persistence, stability}
}
  • Refine by Author
  • 1 Chlamtáč, Eden
  • 1 Elkin, Yury
  • 1 Kurlin, Vitaliy
  • 1 Makarychev, Yury
  • 1 Vakilian, Ali

  • Refine by Classification
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 1 Circuit Minimum Monotone Satisfying Assignment (MMSA) Problem
  • 1 LP Rounding
  • 1 Red-Blue Set Cover Problem
  • 1 clustering dendrogram
  • 1 persistence
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail