7 Search Results for "Erdweg, Sebastian"


Document
Modular Abstract Definitional Interpreters for WebAssembly

Authors: Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Even though static analyses can improve performance and secure programs against vulnerabilities, no static whole-program analyses exist for WebAssembly (Wasm) to date. Part of the reason is that Wasm has many complex language concerns, and it is not obvious how to adopt existing analysis frameworks for these features. This paper explores how abstract definitional interpretation can be used to develop sophisticated analyses for Wasm and other complex languages efficiently. In particular, we show that the semantics of Wasm can be decomposed into 19 language-independent components that abstract different aspects of Wasm. We have written a highly configurable definitional interpreter for full Wasm 1.0 in 1628 LOC against these components. Analysis developers can instantiate this interpreter with different value and effect abstractions to obtain abstract definitional interpreters that compute inter-procedural control and data-flow information. This way, we develop the first whole-program dead code, constant propagation, and taint analyses for Wasm, each in less than 210 LOC. We evaluate our analyses on 1458 Wasm binaries collected by others in the wild. Our implementation is based on a novel framework for definitional abstract interpretation in Scala that eliminates scalability issues of prior work.

Cite as

Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen. Modular Abstract Definitional Interpreters for WebAssembly. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 5:1-5:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{brandl_et_al:LIPIcs.ECOOP.2023.5,
  author =	{Brandl, Katharina and Erdweg, Sebastian and Keidel, Sven and Hansen, Nils},
  title =	{{Modular Abstract Definitional Interpreters for WebAssembly}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{5:1--5:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.5},
  URN =		{urn:nbn:de:0030-drops-181982},
  doi =		{10.4230/LIPIcs.ECOOP.2023.5},
  annote =	{Keywords: Static Analysis, WebAssembly}
}
Document
On Solving Solved Problems

Authors: Sebastian Erdweg

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Some problems are considered solved by the research community. But are they really and does that mean we should stop investigating them? In this essay, I argue that "solved" problems often only appear solved on the surface, while fundamental open research problems lurk below the surface. It requires dedicated researchers to discover those open problems by applying the existing solutions and putting them to the test.

Cite as

Sebastian Erdweg. On Solving Solved Problems. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 10:1-10:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{erdweg:OASIcs.EVCS.2023.10,
  author =	{Erdweg, Sebastian},
  title =	{{On Solving Solved Problems}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{10:1--10:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.10},
  URN =		{urn:nbn:de:0030-drops-177800},
  doi =		{10.4230/OASIcs.EVCS.2023.10},
  annote =	{Keywords: Research Methodology, Parsing, Type Checking}
}
Document
A Simply Numbered Lambda Calculus

Authors: Friedrich Steimann

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
While programming languages traditionally lean towards functions, query languages are often relational in character. Taking the relations language of Harkes and Visser as a starting point, I explore how the functional paradigm, represented by the lambda calculus, can be extended to form the basis of a relational language. It turns out that a straightforward extension with strings of terms not only supports surprisingly many features of the relations language, but also opens it up for higher-order relations, one prominent feature the relations language does not offer.

Cite as

Friedrich Steimann. A Simply Numbered Lambda Calculus. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 24:1-24:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{steimann:OASIcs.EVCS.2023.24,
  author =	{Steimann, Friedrich},
  title =	{{A Simply Numbered Lambda Calculus}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{24:1--24:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.24},
  URN =		{urn:nbn:de:0030-drops-177948},
  doi =		{10.4230/OASIcs.EVCS.2023.24},
  annote =	{Keywords: multiplicities, strings, lambda calculus, relational programming}
}
Document
Functional Programming with Datalog

Authors: André Pacak and Sebastian Erdweg

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
Datalog is a carefully restricted logic programming language. What makes Datalog attractive is its declarative fixpoint semantics: Datalog queries consist of simple Horn clauses, yet Datalog solvers efficiently compute all derivable tuples even for recursive queries. However, as we argue in this paper, Datalog is ill-suited as a programming language and Datalog programs are hard to write and maintain. We propose a "new" frontend for Datalog: functional programming with sets called functional IncA. While programmers write recursive functions over algebraic data types and sets, we transparently translate all code to Datalog relations. However, we retain Datalog’s strengths: Functions that generate sets can encode arbitrary relations and mutually recursive functions have fixpoint semantics. We also ensure that the generated Datalog program terminates whenever the original functional program terminates, so that we can apply off-the-shelve bottom-up Datalog solvers. We demonstrate the versatility and ease of use of functional IncA by implementing a type checker, a program transformation, an interpreter of the untyped lambda calculus, two data-flow analyses, and clone detection of Java bytecode.

Cite as

André Pacak and Sebastian Erdweg. Functional Programming with Datalog. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 7:1-7:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{pacak_et_al:LIPIcs.ECOOP.2022.7,
  author =	{Pacak, Andr\'{e} and Erdweg, Sebastian},
  title =	{{Functional Programming with Datalog}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{7:1--7:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.7},
  URN =		{urn:nbn:de:0030-drops-162354},
  doi =		{10.4230/LIPIcs.ECOOP.2022.7},
  annote =	{Keywords: Datalog, functional programming, demand transformation}
}
Document
A Co-contextual Type Checker for Featherweight Java

Authors: Edlira Kuci, Sebastian Erdweg, Oliver Bracevac, Andi Bejleri, and Mira Mezini

Published in: LIPIcs, Volume 74, 31st European Conference on Object-Oriented Programming (ECOOP 2017)


Abstract
This paper addresses compositional and incremental type checking for object-oriented programming languages. Recent work achieved incremental type checking for structurally typed functional languages through co-contextual typing rules, a constraint-based formulation that removes any context dependency for expression typings. However, that work does not cover key features of object-oriented languages: Subtype polymorphism, nominal typing, and implementation inheritance. Type checkers encode these features in the form of class tables, an additional form of typing context inhibiting incrementalization. In the present work, we demonstrate that an appropriate co-contextual notion to class tables exists, paving the way to efficient incremental type checkers for object-oriented languages. This yields a novel formulation of Igarashi et al.'s Featherweight Java (FJ) type system, where we replace class tables by the dual concept of class table requirements and class table operations by dual operations on class table requirements. We prove the equivalence of FJ's type system and our co-contextual formulation. Based on our formulation, we implemented an incremental FJ type checker and compared its performance against javac on a number of realistic example programs.

Cite as

Edlira Kuci, Sebastian Erdweg, Oliver Bracevac, Andi Bejleri, and Mira Mezini. A Co-contextual Type Checker for Featherweight Java. In 31st European Conference on Object-Oriented Programming (ECOOP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 74, pp. 18:1-18:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kuci_et_al:LIPIcs.ECOOP.2017.18,
  author =	{Kuci, Edlira and Erdweg, Sebastian and Bracevac, Oliver and Bejleri, Andi and Mezini, Mira},
  title =	{{A Co-contextual Type Checker for Featherweight Java}},
  booktitle =	{31st European Conference on Object-Oriented Programming (ECOOP 2017)},
  pages =	{18:1--18:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-035-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{74},
  editor =	{M\"{u}ller, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2017.18},
  URN =		{urn:nbn:de:0030-drops-72628},
  doi =		{10.4230/LIPIcs.ECOOP.2017.18},
  annote =	{Keywords: type checking, co-contextual, constraints, class table, Featherweight Java}
}
Document
Programming Language Techniques for Incremental and Reactive Computing (Dagstuhl Seminar 16402)

Authors: Camil Demetrescu, Sebastian Erdweg, Matthew A. Hammer, and Shriram Krishnamurthi

Published in: Dagstuhl Reports, Volume 6, Issue 10 (2017)


Abstract
Incremental computations are those that process input changes faster than naive computation that runs from scratch, and reactive computations consist of interactive behavior that varies over time. Due to the importance and prevalence of incremental, reactive systems, ad hoc variants of incremental and reactive computation are ubiquitous in modern software systems. In response to this reality, the PL research community has worked for several decades to advance new languages for systems that interface with a dynamically-changing environment. In this space, researchers propose new general-purpose languages and algorithms to express and implement efficient, dynamic behavior, in the form of incremental and reactive language systems. While these research lines continue to develop successfully, this work lacks a shared community that synthesizes a collective discussion about common motivations, alternative techniques, current results and future challenges. To overcome this lack of community, this seminar will work towards building one, by strengthening existing research connections and by forging new ones. Developing a shared culture is critical to the future advancement of incremental and reactive computing in modern PL research, and in turn, this PL research is critical to developing the efficient, understandable interactive systems of the future.

Cite as

Camil Demetrescu, Sebastian Erdweg, Matthew A. Hammer, and Shriram Krishnamurthi. Programming Language Techniques for Incremental and Reactive Computing (Dagstuhl Seminar 16402). In Dagstuhl Reports, Volume 6, Issue 10, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{demetrescu_et_al:DagRep.6.10.1,
  author =	{Demetrescu, Camil and Erdweg, Sebastian and Hammer, Matthew A. and Krishnamurthi, Shriram},
  title =	{{Programming Language Techniques for Incremental and Reactive Computing (Dagstuhl Seminar 16402)}},
  pages =	{1--12},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{6},
  number =	{10},
  editor =	{Demetrescu, Camil and Erdweg, Sebastian and Hammer, Matthew A. and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.6.10.1},
  URN =		{urn:nbn:de:0030-drops-69491},
  doi =		{10.4230/DagRep.6.10.1},
  annote =	{Keywords: Incremental computing, reactive programming, memoization, change propagation, dynamic dependency graph, dataflow programming, live programming}
}
Document
Domain-Specific Languages (Dagstuhl Seminar 15062)

Authors: Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser

Published in: Dagstuhl Reports, Volume 5, Issue 2 (2015)


Abstract
This report documents the program and outcomes of Dagstuhl Seminar 15062 “Domain-Specific Languages”, which took place February 1-6, 2015. The seminar was motivated on the one hand by the high interest in domain-specific languages in academia and industry and on the other hand by the observation that the community is divided into largely disconnected subdisciplines (e.g., internal, external, visual, model-driven). The seminar included participants across these subdisciplines and included overview talks, technical talks, demos, discussion groups, and an industrial panel. This report collects the abstracts of talks and other activities at the seminar and summarizes the outcomes of the seminar.

Cite as

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser. Domain-Specific Languages (Dagstuhl Seminar 15062). In Dagstuhl Reports, Volume 5, Issue 2, pp. 26-43, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Article{erdweg_et_al:DagRep.5.2.26,
  author =	{Erdweg, Sebastian and Erwig, Martin and Paige, Richard F. and Visser, Eelco},
  title =	{{Domain-Specific Languages (Dagstuhl Seminar 15062)}},
  pages =	{26--43},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2015},
  volume =	{5},
  number =	{2},
  editor =	{Erdweg, Sebastian and Erwig, Martin and Paige, Richard F. and Visser, Eelco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.5.2.26},
  URN =		{urn:nbn:de:0030-drops-50434},
  doi =		{10.4230/DagRep.5.2.26},
  annote =	{Keywords: Internal DSLs, External DSLs, Domain-specific modeling, Extensible languages, Language workbenches, Textual/graph-based/visual languages, Language design, Language implementation techniques}
}
  • Refine by Author
  • 6 Erdweg, Sebastian
  • 1 Bejleri, Andi
  • 1 Bracevac, Oliver
  • 1 Brandl, Katharina
  • 1 Demetrescu, Camil
  • Show More...

  • Refine by Classification
  • 1 Software and its engineering → Automated static analysis
  • 1 Software and its engineering → Multiparadigm languages
  • 1 Software and its engineering → Software notations and tools
  • 1 Theory of computation → Functional constructs
  • 1 Theory of computation → Parsing
  • Show More...

  • Refine by Keyword
  • 1 Datalog
  • 1 Domain-specific modeling
  • 1 Extensible languages
  • 1 External DSLs
  • 1 Featherweight Java
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2023
  • 2 2017
  • 1 2015
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail