3 Search Results for "Feldmann, Michael"


Document
Near-Shortest Path Routing in Hybrid Communication Networks

Authors: Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, Philipp Schneider, and Martijn Struijs

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
Hybrid networks, i.e., networks that leverage different means of communication, become ever more widespread. To allow theoretical study of such networks, [Augustine et al., SODA'20] introduced the HYBRID model, which is based on the concept of synchronous message passing and uses two fundamentally different principles of communication: a local mode, which allows every node to exchange one message per round with each neighbor in a local communication graph; and a global mode where any pair of nodes can exchange messages, but only few such exchanges can take place per round. A sizable portion of the previous research for the HYBRID model revolves around basic communication primitives and computing distances or shortest paths in networks. In this paper, we extend this study to a related fundamental problem of computing compact routing schemes for near-shortest paths in the local communication graph. We demonstrate that, for the case where the local communication graph is a unit-disc graph with n nodes that is realized in the plane and has no radio holes, we can deterministically compute a routing scheme that has constant stretch and uses labels and local routing tables of size O(log n) bits in only O(log n) rounds.

Cite as

Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, Philipp Schneider, and Martijn Struijs. Near-Shortest Path Routing in Hybrid Communication Networks. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{coy_et_al:LIPIcs.OPODIS.2021.11,
  author =	{Coy, Sam and Czumaj, Artur and Feldmann, Michael and Hinnenthal, Kristian and Kuhn, Fabian and Scheideler, Christian and Schneider, Philipp and Struijs, Martijn},
  title =	{{Near-Shortest Path Routing in Hybrid Communication Networks}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.11},
  URN =		{urn:nbn:de:0030-drops-157863},
  doi =		{10.4230/LIPIcs.OPODIS.2021.11},
  annote =	{Keywords: Hybrid networks, overlay networks}
}
Document
Fast Hybrid Network Algorithms for Shortest Paths in Sparse Graphs

Authors: Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
We consider the problem of computing shortest paths in hybrid networks, in which nodes can make use of different communication modes. For example, mobile phones may use ad-hoc connections via Bluetooth or Wi-Fi in addition to the cellular network to solve tasks more efficiently. Like in this case, the different communication modes may differ considerably in range, bandwidth, and flexibility. We build upon the model of Augustine et al. [SODA '20], which captures these differences by a local and a global mode. Specifically, the local edges model a fixed communication network in which O(1) messages of size O(log n) can be sent over every edge in each synchronous round. The global edges form a clique, but nodes are only allowed to send and receive a total of at most O(log n) messages over global edges, which restricts the nodes to use these edges only very sparsely. We demonstrate the power of hybrid networks by presenting algorithms to compute Single-Source Shortest Paths and the diameter very efficiently in sparse graphs. Specifically, we present exact O(log n) time algorithms for cactus graphs (i.e., graphs in which each edge is contained in at most one cycle), and 3-approximations for graphs that have at most n + O(n^{1/3}) edges and arboricity O(log n). For these graph classes, our algorithms provide exponentially faster solutions than the best known algorithms for general graphs in this model. Beyond shortest paths, we also provide a variety of useful tools and techniques for hybrid networks, which may be of independent interest.

Cite as

Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast Hybrid Network Algorithms for Shortest Paths in Sparse Graphs. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.OPODIS.2020.31,
  author =	{Feldmann, Michael and Hinnenthal, Kristian and Scheideler, Christian},
  title =	{{Fast Hybrid Network Algorithms for Shortest Paths in Sparse Graphs}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.31},
  URN =		{urn:nbn:de:0030-drops-135165},
  doi =		{10.4230/LIPIcs.OPODIS.2020.31},
  annote =	{Keywords: hybrid networks, overlay networks, sparse graphs, cactus graphs}
}
Document
The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems

Authors: Andreas Emil Feldmann and Dániel Marx

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
Given a directed graph G and a list (s_1, t_1), ..., (s_k, t_k) of terminal pairs, the Directed Steiner Network problem asks for a minimum-cost subgraph of G that contains a directed s_i -> t_i path for every 1 <= i <= k. The special case Directed Steiner Tree (when we ask for paths from a root r to terminals t_1, . . . , t_k) is known to be fixed-parameter tractable parameterized by the number of terminals, while the special case Strongly Connected Steiner Subgraph (when we ask for a path from every t_i to every other t_j ) is known to be W[1]-hard parameterized by the number of terminals. We systematically explore the complexity landscape of directed Steiner problems to fully understand which other special cases are FPT or W[1]-hard. Formally, if H is a class of directed graphs, then we look at the special case of Directed Steiner Network where the list (s_1, t_1), ..., (s_k, t_k) of requests form a directed graph that is a member of H. Our main result is a complete characterization of the classes H resulting in fixed-parameter tractable special cases: we show that if every pattern in H has the combinatorial property of being "transitively equivalent to a bounded-length caterpillar with a bounded number of extra edges," then the problem is FPT, and it is W[1]-hard for every recursively enumerable H not having this property. This complete dichotomy unifies and generalizes the known results showing that Directed Steiner Tree is FPT [Dreyfus and Wagner, Networks 1971], Strongly Connected Steiner Subgraph is W[1]-hard [Guo et al., SIAM J. Discrete Math. 2011], and Directed Steiner Network is solvable in polynomial-time for constant number of terminals [Feldman and Ruhl, SIAM J. Comput. 2006], and moreover reveals a large continent of tractable cases that were not known before.

Cite as

Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2016.27,
  author =	{Feldmann, Andreas Emil and Marx, D\'{a}niel},
  title =	{{The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.27},
  URN =		{urn:nbn:de:0030-drops-63060},
  doi =		{10.4230/LIPIcs.ICALP.2016.27},
  annote =	{Keywords: Directed Steiner Tree, Directed Steiner Network, fixed-parameter tractability, dichotomy}
}
  • Refine by Author
  • 2 Feldmann, Michael
  • 2 Hinnenthal, Kristian
  • 2 Scheideler, Christian
  • 1 Coy, Sam
  • 1 Czumaj, Artur
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Distributed algorithms

  • Refine by Keyword
  • 2 overlay networks
  • 1 Directed Steiner Network
  • 1 Directed Steiner Tree
  • 1 Hybrid networks
  • 1 cactus graphs
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail