2 Search Results for "Frankl, Peter"


Document
One-Way Communication Complexity and Non-Adaptive Decision Trees

Authors: Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More generally, we show the following when the gadget is Inner Product on 2b input bits for all b ≥ 2, denoted IP. - If f is a total Boolean function that depends on all of its n input bits, then the bounded-error one-way quantum communication complexity of f∘IP equals Ω(n(b-1)). - If f is a partial Boolean function, then the deterministic one-way communication complexity of f∘IP is at least Ω(b ⋅ 𝖣_{dt}^ → (f)), where 𝖣_{dt}^ → (f) denotes non-adaptive decision tree complexity of f. To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f∘IP. We then appeal to a result of Klauck [STOC'00], which immediately yields our quantum lower bound. Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede and Khachatrian [Adv. Appl. Math.'98], and Frankl and Tokushige [Comb.'99]. It is known due to a result of Montanaro and Osborne [arXiv'09] that the deterministic one-way communication complexity of f∘XOR equals the non-adaptive parity decision tree complexity of f. In contrast, we show the following when the inner gadget is the AND function on 2 input bits. - There exists a function for which even the quantum non-adaptive AND decision tree complexity of f is exponentially large in the deterministic one-way communication complexity of f∘AND. - However, for symmetric functions f, the non-adaptive AND decision tree complexity of f is at most quadratic in the (even two-way) communication complexity of f∘AND. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not lift to a lower bound on one-way communication complexity of f∘AND. The proof of the first bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection between the one-way communication complexity of f and the Möbius sparsity of f, and then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group testing; for the sake of completeness, we include a proof of this result. It is well known that the rank of the communication matrix of a function F is an upper bound on its deterministic one-way communication complexity. This bound is known to be tight for some F. However, in our final result we show that this is not the case when F = f∘AND. More precisely we show that for all f, the deterministic one-way communication complexity of F = f∘AND is at most (rank(M_{F}))(1 - Ω(1)), where M_{F} denotes the communication matrix of F.

Cite as

Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. One-Way Communication Complexity and Non-Adaptive Decision Trees. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 49:1-49:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mande_et_al:LIPIcs.STACS.2022.49,
  author =	{Mande, Nikhil S. and Sanyal, Swagato and Sherif, Suhail},
  title =	{{One-Way Communication Complexity and Non-Adaptive Decision Trees}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{49:1--49:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.49},
  URN =		{urn:nbn:de:0030-drops-158598},
  doi =		{10.4230/LIPIcs.STACS.2022.49},
  annote =	{Keywords: Decision trees, communication complexity, composed Boolean functions}
}
Document
A Variant of the VC-Dimension with Applications to Depth-3 Circuits

Authors: Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We introduce the following variant of the VC-dimension. Given S ⊆ {0,1}ⁿ and a positive integer d, we define 𝕌_d(S) to be the size of the largest subset I ⊆ [n] such that the projection of S on every subset of I of size d is the d-dimensional cube. We show that determining the largest cardinality of a set with a given 𝕌_d dimension is equivalent to a Turán-type problem related to the total number of cliques in a d-uniform hypergraph. This allows us to beat the Sauer-Shelah lemma for this notion of dimension. We use this to obtain several results on Σ₃^k-circuits, i.e., depth-3 circuits with top gate OR and bottom fan-in at most k: - Tight relationship between the number of satisfying assignments of a 2-CNF and the dimension of the largest projection accepted by it, thus improving Paturi, Saks, and Zane (Comput. Complex. '00). - Improved Σ₃³-circuit lower bounds for affine dispersers for sublinear dimension. Moreover, we pose a purely hypergraph-theoretic conjecture under which we get further improvement. - We make progress towards settling the Σ₃² complexity of the inner product function and all degree-2 polynomials over 𝔽₂ in general. The question of determining the Σ₃³ complexity of IP was recently posed by Golovnev, Kulikov, and Williams (ITCS'21).

Cite as

Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A Variant of the VC-Dimension with Applications to Depth-3 Circuits. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 72:1-72:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{frankl_et_al:LIPIcs.ITCS.2022.72,
  author =	{Frankl, Peter and Gryaznov, Svyatoslav and Talebanfard, Navid},
  title =	{{A Variant of the VC-Dimension with Applications to Depth-3 Circuits}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{72:1--72:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.72},
  URN =		{urn:nbn:de:0030-drops-156680},
  doi =		{10.4230/LIPIcs.ITCS.2022.72},
  annote =	{Keywords: VC-dimension, Hypergraph, Clique, Affine Disperser, Circuit}
}
  • Refine by Author
  • 1 Frankl, Peter
  • 1 Gryaznov, Svyatoslav
  • 1 Mande, Nikhil S.
  • 1 Sanyal, Swagato
  • 1 Sherif, Suhail
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Hypergraphs
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Oracles and decision trees

  • Refine by Keyword
  • 1 Affine Disperser
  • 1 Circuit
  • 1 Clique
  • 1 Decision trees
  • 1 Hypergraph
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail