1 Search Results for "Gadekar, Ameet"


Document
On the Hardness of Learning Sparse Parities

Authors: Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
This work investigates the hardness of computing sparse solutions to systems of linear equations over F_2. Consider the k-EventSet problem: given a homogeneous system of linear equations over $\F_2$ on $n$ variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e. a k-sparse solution). While there is a simple O(n^{k/2})-time algorithm for it, establishing fixed parameter intractability for k-EventSet has been a notorious open problem. Towards this goal, we show that unless \kclq can be solved in n^{o(k)} time, k-EventSet has no polynomial time algorithm when k = omega(log^2(n)). Our work also shows that the non-homogeneous generalization of the problem - which we call k-VectorSum - is W[1]-hard on instances where the number of equations is O(k*log(n)), improving on previous reductions which produced Omega(n) equations. We use the hardness of k-VectorSum as a starting point to prove the result for k-EventSet, and additionally strengthen the former to show the hardness of approximately learning k-juntas. In particular, we prove that given a system of O(exp(O(k))*log(n)) linear equations, it is W[1]-hard to decide if there is a k-sparse linear form satisfying all the equations or any function on at most k-variables (a k-junta) satisfies at most (1/2 + epsilon)-fraction of the equations, for any constant epsilon > 0. In the setting of computational learning, this shows hardness of approximate non-proper learning of k-parities. In a similar vein, we use the hardness of k-EventSet to show that that for any constant d, unless k-Clique can be solved in n^{o(k)} time, there is no poly(m,n)*2^{o(sqrt{k})} time algorithm to decide whether a given set of $m$ points in F_2^n satisfies: (i) there exists a non-trivial k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree d polynomial P supported on at most k variables evaluates to zero on approx Pr_{F_2^n}[P({z}) = 0] fraction of the points i.e., P is fooled by the set of points. Lastly, we study the approximation in the sparsity of the solution. Let the Gap-k-VectorSum problem be: given an instance of k-VectorSum of size n, decide if there exist a k-sparse solution, or every solution is of sparsity at least k' = (1+delta_0)k. Assuming the Exponential Time Hypothesis, we show that for some constants c_0, delta_0 > 0 there is no poly(n) time algorithm for Gap-k-VectorSum when k = omega((log(log( n)))^{c_0}).

Cite as

Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. On the Hardness of Learning Sparse Parities. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bhattacharyya_et_al:LIPIcs.ESA.2016.11,
  author =	{Bhattacharyya, Arnab and Gadekar, Ameet and Ghoshal, Suprovat and Saket, Rishi},
  title =	{{On the Hardness of Learning Sparse Parities}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.11},
  URN =		{urn:nbn:de:0030-drops-63628},
  doi =		{10.4230/LIPIcs.ESA.2016.11},
  annote =	{Keywords: Fixed Parameter Tractable, Juntas, Minimum Distance of Code, Psuedorandom Generators}
}
  • Refine by Author
  • 1 Bhattacharyya, Arnab
  • 1 Gadekar, Ameet
  • 1 Ghoshal, Suprovat
  • 1 Saket, Rishi

  • Refine by Classification

  • Refine by Keyword
  • 1 Fixed Parameter Tractable
  • 1 Juntas
  • 1 Minimum Distance of Code
  • 1 Psuedorandom Generators

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail