2 Search Results for "Galeana, Hugo Rincon"


Document
The Time Complexity of Consensus Under Oblivious Message Adversaries

Authors: Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We study the problem of solving consensus in synchronous directed dynamic networks, in which communication is controlled by an oblivious message adversary that picks the communication graph to be used in a round from a fixed set of graphs 𝐃 arbitrarily. In this fundamental model, determining consensus solvability and designing efficient consensus algorithms is surprisingly difficult. Enabled by a decision procedure that is derived from a well-established previous consensus solvability characterization for a given set 𝐃, we study, for the first time, the time complexity of solving consensus in this model: We provide both upper and lower bounds for this time complexity, and also relate it to the number of iterations required by the decision procedure. Among other results, we find that reaching consensus under an oblivious message adversary can take exponentially longer than both deciding consensus solvability and broadcasting the input value of some unknown process to all other processes.

Cite as

Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The Time Complexity of Consensus Under Oblivious Message Adversaries. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 100:1-100:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{winkler_et_al:LIPIcs.ITCS.2023.100,
  author =	{Winkler, Kyrill and Paz, Ami and Rincon Galeana, Hugo and Schmid, Stefan and Schmid, Ulrich},
  title =	{{The Time Complexity of Consensus Under Oblivious Message Adversaries}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{100:1--100:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.100},
  URN =		{urn:nbn:de:0030-drops-176030},
  doi =		{10.4230/LIPIcs.ITCS.2023.100},
  annote =	{Keywords: dynamic networks, oblivious message adversaries, consensus, time complexity}
}
Document
Continuous Tasks and the Asynchronous Computability Theorem

Authors: Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized distributed tasks that are wait-free solvable and uncovered deep connections with combinatorial topology. We provide an alternative characterization of those tasks by means of the novel concept of continuous tasks, which have an input/output specification that is a continuous function between the geometric realizations of the input and output complex: We state and prove a precise characterization theorem (CACT) for wait-free solvable tasks in terms of continuous tasks. Its proof utilizes a novel chromatic version of a foundational result in algebraic topology, the simplicial approximation theorem, which is also proved in this paper. Apart from the alternative proof of the ACT implied by our CACT, we also demonstrate that continuous tasks have an expressive power that goes beyond classic task specifications, and hence open up a promising venue for future research: For the well-known approximate agreement task, we show that one can easily encode the desired proportion of the occurrence of specific outputs, namely, exact agreement, in the continuous task specification.

Cite as

Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid. Continuous Tasks and the Asynchronous Computability Theorem. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 73:1-73:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{galeana_et_al:LIPIcs.ITCS.2022.73,
  author =	{Galeana, Hugo Rincon and Rajsbaum, Sergio and Schmid, Ulrich},
  title =	{{Continuous Tasks and the Asynchronous Computability Theorem}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{73:1--73:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.73},
  URN =		{urn:nbn:de:0030-drops-156696},
  doi =		{10.4230/LIPIcs.ITCS.2022.73},
  annote =	{Keywords: Wait-free computability, topology, distributed computing, decision tasks, shared memory}
}
  • Refine by Author
  • 2 Schmid, Ulrich
  • 1 Galeana, Hugo Rincon
  • 1 Paz, Ami
  • 1 Rajsbaum, Sergio
  • 1 Rincon Galeana, Hugo
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Hypergraphs
  • 1 Networks
  • 1 Theory of computation → Distributed algorithms
  • 1 Theory of computation → Distributed computing models

  • Refine by Keyword
  • 1 Wait-free computability
  • 1 consensus
  • 1 decision tasks
  • 1 distributed computing
  • 1 dynamic networks
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail