3 Search Results for "Giannis, Konstantinos"


Document
Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

Authors: Loukas Georgiadis, Konstantinos Giannis, Giuseppe F. Italiano, and Evangelos Kosinas

Published in: LIPIcs, Volume 190, 19th International Symposium on Experimental Algorithms (SEA 2021)


Abstract
We consider two problems regarding the computation of connectivity cuts in undirected graphs, namely identifying vertex-edge cut-pairs and identifying 2-edge cuts, and present an experimental study of efficient algorithms for their computation. In the first problem, we are given a biconnected graph G and our goal is to find all vertices v such that G⧵v is not 2-edge-connected, while in the second problem, we are given a 2-edge-connected graph G and our goal is to find all edges e such that G⧵e is not 2-edge-connected. These problems are motivated by the notion of twinless strong connectivity in directed graphs but are also of independent interest. Moreover, the computation of 2-edge cuts is a main step in algorithms that compute the 3-edge-connected components of a graph. In this paper, we present streamlined versions of two recent linear-time algorithms of Georgiadis and Kosinas that compute all vertex-edge cut-pairs and all 2-edge cuts, respectively. We compare the empirical performance of our vertex-edge cut-pairs algorithm with an alternative linear-time method that exploits the structure of the triconnected components of G. Also, we compare the empirical performance of our 2-edge cuts algorithm with the algorithm of Tsin, which was reported to be the fastest one among the previously existing for this problem. To that end, we conduct a thorough experimental study to highlight the merits and weaknesses of each technique.

Cite as

Loukas Georgiadis, Konstantinos Giannis, Giuseppe F. Italiano, and Evangelos Kosinas. Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.SEA.2021.20,
  author =	{Georgiadis, Loukas and Giannis, Konstantinos and Italiano, Giuseppe F. and Kosinas, Evangelos},
  title =	{{Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2021.20},
  URN =		{urn:nbn:de:0030-drops-137920},
  doi =		{10.4230/LIPIcs.SEA.2021.20},
  annote =	{Keywords: 2-Connectivity, Graph Algorithms, Split Components}
}
Document
Dynamic Dominators and Low-High Orders in DAGs

Authors: Loukas Georgiadis, Konstantinos Giannis, Giuseppe F. Italiano, Aikaterini Karanasiou, and Luigi Laura

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We consider practical algorithms for maintaining the dominator tree and a low-high order in directed acyclic graphs (DAGs) subject to dynamic operations. Let G be a directed graph with a distinguished start vertex s. The dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if all paths from s to w in G include v. The dominator tree is a central tool in program optimization and code generation, and has many applications in other diverse areas including constraint programming, circuit testing, biology, and in algorithms for graph connectivity problems. A low-high order of G is a preorder of D that certifies the correctness of D, and has further applications in connectivity and path-determination problems. We first provide a practical and carefully engineered version of a recent algorithm [ICALP 2017] for maintaining the dominator tree of a DAG through a sequence of edge deletions. The algorithm runs in O(mn) total time and O(m) space, where n is the number of vertices and m is the number of edges before any deletion. In addition, we present a new algorithm that maintains a low-high order of a DAG under edge deletions within the same bounds. Both results extend to the case of reducible graphs (a class that includes DAGs). Furthermore, we present a fully dynamic algorithm for maintaining the dominator tree of a DAG under an intermixed sequence of edge insertions and deletions. Although it does not maintain the O(mn) worst-case bound of the decremental algorithm, our experiments highlight that the fully dynamic algorithm performs very well in practice. Finally, we study the practical efficiency of all our algorithms by conducting an extensive experimental study on real-world and synthetic graphs.

Cite as

Loukas Georgiadis, Konstantinos Giannis, Giuseppe F. Italiano, Aikaterini Karanasiou, and Luigi Laura. Dynamic Dominators and Low-High Orders in DAGs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 50:1-50:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.ESA.2019.50,
  author =	{Georgiadis, Loukas and Giannis, Konstantinos and Italiano, Giuseppe F. and Karanasiou, Aikaterini and Laura, Luigi},
  title =	{{Dynamic Dominators and Low-High Orders in DAGs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{50:1--50:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.50},
  URN =		{urn:nbn:de:0030-drops-111715},
  doi =		{10.4230/LIPIcs.ESA.2019.50},
  annote =	{Keywords: Connectivity, dominators, low-high orders}
}
Document
Incremental Low-High Orders of Directed Graphs and Applications

Authors: Loukas Georgiadis, Konstantinos Giannis, Aikaterini Karanasiou, and Luigi Laura

Published in: LIPIcs, Volume 75, 16th International Symposium on Experimental Algorithms (SEA 2017)


Abstract
A flow graph G = (V, E, s) is a directed graph with a distinguished start vertex s. The dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if all paths from s to w include v. The dominator tree is a central tool in program optimization and code generation, and has many applications in other diverse areas including constraint programming, circuit testing, biology, and in algorithms for graph connectivity problems. A low-high order of G is a preorder d of D that certifies the correctness of D, and has further applications in connectivity and path-determination problems. In this paper we consider how to maintain efficiently a low-high order of a flow graph incrementally under edge insertions. We present algorithms that run in O(mn) total time for a sequence of edge insertions in a flow graph with n vertices, where m is the total number of edges after all insertions. These immediately provide the first incremental certifying algorithms for maintaining the dominator tree in O(mn) total time, and also imply incremental algorithms for other problems. Hence, we provide a substantial improvement over the O(m^2) straightforward algorithms, which recompute the solution from scratch after each edge insertion. Furthermore, we provide efficient implementations of our algorithms and conduct an extensive experimental study on real-world graphs taken from a variety of application areas. The experimental results show that our algorithms perform very well in practice.

Cite as

Loukas Georgiadis, Konstantinos Giannis, Aikaterini Karanasiou, and Luigi Laura. Incremental Low-High Orders of Directed Graphs and Applications. In 16th International Symposium on Experimental Algorithms (SEA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 75, pp. 27:1-27:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.SEA.2017.27,
  author =	{Georgiadis, Loukas and Giannis, Konstantinos and Karanasiou, Aikaterini and Laura, Luigi},
  title =	{{Incremental Low-High Orders of Directed Graphs and Applications}},
  booktitle =	{16th International Symposium on Experimental Algorithms (SEA 2017)},
  pages =	{27:1--27:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-036-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{75},
  editor =	{Iliopoulos, Costas S. and Pissis, Solon P. and Puglisi, Simon J. and Raman, Rajeev},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2017.27},
  URN =		{urn:nbn:de:0030-drops-76319},
  doi =		{10.4230/LIPIcs.SEA.2017.27},
  annote =	{Keywords: connectivity, directed graphs, dominators, dynamic algorithms}
}
  • Refine by Author
  • 3 Georgiadis, Loukas
  • 3 Giannis, Konstantinos
  • 2 Italiano, Giuseppe F.
  • 2 Karanasiou, Aikaterini
  • 2 Laura, Luigi
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Dynamic graph algorithms

  • Refine by Keyword
  • 2 dominators
  • 1 2-Connectivity
  • 1 Connectivity
  • 1 Graph Algorithms
  • 1 Split Components
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2017
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail