12 Search Results for "Giannopoulos, Ioannis"


Document
Do You Need Instructions Again? Predicting Wayfinding Instruction Demand

Authors: Negar Alinaghi, Tiffany C. K. Kwok, Peter Kiefer, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The demand for instructions during wayfinding, defined as the frequency of requesting instructions for each decision point, can be considered as an important indicator of the internal cognitive processes during wayfinding. This demand can be a consequence of the mental state of feeling lost, being uncertain, mind wandering, having difficulty following the route, etc. Therefore, it can be of great importance for theoretical cognitive studies on human perception of the environment. From an application perspective, this demand can be used as a measure of the effectiveness of the navigation assistance system. It is therefore worthwhile to be able to predict this demand and also to know what factors trigger it. This paper takes a step in this direction by reporting a successful prediction of instruction demand (accuracy of 78.4%) in a real-world wayfinding experiment with 45 participants, and interpreting the environmental, user, instructional, and gaze-related features that caused it.

Cite as

Negar Alinaghi, Tiffany C. K. Kwok, Peter Kiefer, and Ioannis Giannopoulos. Do You Need Instructions Again? Predicting Wayfinding Instruction Demand. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alinaghi_et_al:LIPIcs.GIScience.2023.1,
  author =	{Alinaghi, Negar and Kwok, Tiffany C. K. and Kiefer, Peter and Giannopoulos, Ioannis},
  title =	{{Do You Need Instructions Again? Predicting Wayfinding Instruction Demand}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.1},
  URN =		{urn:nbn:de:0030-drops-188963},
  doi =		{10.4230/LIPIcs.GIScience.2023.1},
  annote =	{Keywords: Wayfinding, Navigation Instructions, Urban Computing, Gaze Analysis}
}
Document
I Can Tell by Your Eyes! Continuous Gaze-Based Turn-Activity Prediction Reveals Spatial Familiarity

Authors: Negar Alinaghi, Markus Kattenbeck, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
Spatial familiarity plays an essential role in the wayfinding decision-making process. Recent findings in wayfinding activity recognition domain suggest that wayfinders' turning behavior at junctions is strongly influenced by their spatial familiarity. By continuously monitoring wayfinders' turning behavior as reflected in their eye movements during the decision-making period (i.e., immediately after an instruction is received until reaching the corresponding junction for which the instruction was given), we provide evidence that familiar and unfamiliar wayfinders can be distinguished. By applying a pre-trained XGBoost turning activity classifier on gaze data collected in a real-world wayfinding task with 33 participants, our results suggest that familiar and unfamiliar wayfinders show different onset and intensity of turning behavior. These variations are not only present between the two classes -familiar vs. unfamiliar- but also within each class. The differences in turning-behavior within each class may stem from multiple sources, including different levels of familiarity with the environment.

Cite as

Negar Alinaghi, Markus Kattenbeck, and Ioannis Giannopoulos. I Can Tell by Your Eyes! Continuous Gaze-Based Turn-Activity Prediction Reveals Spatial Familiarity. In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{alinaghi_et_al:LIPIcs.COSIT.2022.2,
  author =	{Alinaghi, Negar and Kattenbeck, Markus and Giannopoulos, Ioannis},
  title =	{{I Can Tell by Your Eyes! Continuous Gaze-Based Turn-Activity Prediction Reveals Spatial Familiarity}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{2:1--2:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.2},
  URN =		{urn:nbn:de:0030-drops-168872},
  doi =		{10.4230/LIPIcs.COSIT.2022.2},
  annote =	{Keywords: Spatial Familiarity, Gaze-based Activity Recognition, Wayfinding, Machine Learning}
}
Document
Rethinking Route Choices! On the Importance of Route Selection in Wayfinding Experiments

Authors: Bartosz Mazurkiewicz, Markus Kattenbeck, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
Route selection for a wayfinding experiment is not a trivial task and is often made in an undocumented way. Only recently (2021), a systematic, reproducible and score-based approach for route selection for wayfinding experiments was published. However, it is still unclear how robust study results are across all potential routes in a particular experimental area. An important share of routes might lead to different conclusions than most routes. This share would distort and/or invert the study outcome. If so, the question of selecting routes that are unlikely to distort the results of our wayfinding experiments remains unanswered. In order to answer these questions, an agent-based simulation study with four different sample sizes (N = 15, 25, 50, 3000 agents) comparing Turn-by-Turn and Free Choice Navigation approaches (between-subject design) regarding their arrival rates on more than 11000 routes in the city center of Vienna, Austria, was run. The results of our study indicate that with decreasing sample size, there is an increase in the share of routes which lead to contradictory results regarding the arrival rate, i.e., the results become less robust. Therefore, based on simulation results, we present an approach for selecting suitable routes even for small-scale in-situ studies.

Cite as

Bartosz Mazurkiewicz, Markus Kattenbeck, and Ioannis Giannopoulos. Rethinking Route Choices! On the Importance of Route Selection in Wayfinding Experiments. In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mazurkiewicz_et_al:LIPIcs.COSIT.2022.6,
  author =	{Mazurkiewicz, Bartosz and Kattenbeck, Markus and Giannopoulos, Ioannis},
  title =	{{Rethinking Route Choices! On the Importance of Route Selection in Wayfinding Experiments}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.6},
  URN =		{urn:nbn:de:0030-drops-168916},
  doi =		{10.4230/LIPIcs.COSIT.2022.6},
  annote =	{Keywords: Route Selection, Route Features, Human Wayfinding, Navigation, Experiments, Experimental Design}
}
Document
Will You Take This Turn? Gaze-Based Turning Activity Recognition During Navigation

Authors: Negar Alinaghi, Markus Kattenbeck, Antonia Golab, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 208, 11th International Conference on Geographic Information Science (GIScience 2021) - Part II


Abstract
Decision making is an integral part of wayfinding and people progressively use navigation systems to facilitate this task. The primary decision, which is also the main source of navigation error, is about the turning activity, i.e., to decide either to turn left or right or continue straight forward. The fundamental step to deal with this error, before applying any preventive approaches, e.g., providing more information, or any compensatory solutions, e.g., pre-calculating alternative routes, could be to predict and recognize the potential turning activity. This paper aims to address this step by predicting the turning decision of pedestrian wayfinders, before the actual action takes place, using primarily gaze-based features. Applying Machine Learning methods, the results of the presented experiment demonstrate an overall accuracy of 91% within three seconds before arriving at a decision point. Beyond the application perspective, our findings also shed light on the cognitive processes of decision making as reflected by the wayfinder’s gaze behaviour: incorporating environmental and user-related factors to the model, results in a noticeable change with respect to the importance of visual search features in turn activity recognition.

Cite as

Negar Alinaghi, Markus Kattenbeck, Antonia Golab, and Ioannis Giannopoulos. Will You Take This Turn? Gaze-Based Turning Activity Recognition During Navigation. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{alinaghi_et_al:LIPIcs.GIScience.2021.II.5,
  author =	{Alinaghi, Negar and Kattenbeck, Markus and Golab, Antonia and Giannopoulos, Ioannis},
  title =	{{Will You Take This Turn? Gaze-Based Turning Activity Recognition During Navigation}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part II},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-208-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{208},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.II.5},
  URN =		{urn:nbn:de:0030-drops-147649},
  doi =		{10.4230/LIPIcs.GIScience.2021.II.5},
  annote =	{Keywords: Activity Recognition, Wayfinding, Eye Tracking, Machine Learning}
}
Document
Navigating Your Way! Increasing the Freedom of Choice During Wayfinding

Authors: Bartosz Mazurkiewicz, Markus Kattenbeck, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 208, 11th International Conference on Geographic Information Science (GIScience 2021) - Part II


Abstract
Using navigation assistance systems has become widespread and scholars have tried to mitigate potentially adverse effects on spatial cognition these systems may have due to the division of attention they require. In order to nudge the user to engage more with the environment, we propose a novel navigation paradigm called Free Choice Navigation balancing the number of free choices, route length and number of instructions given. We test the viability of this approach by means of an agent-based simulation for three different cities. Environmental spatial abilities and spatial confidence are the two most important modeled features of our agents. Our results are very promising: Agents could decide freely at more than 50% of all junctions. More than 90% of the agents reached their destination within an average distance of about 125% shortest path length.

Cite as

Bartosz Mazurkiewicz, Markus Kattenbeck, and Ioannis Giannopoulos. Navigating Your Way! Increasing the Freedom of Choice During Wayfinding. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mazurkiewicz_et_al:LIPIcs.GIScience.2021.II.9,
  author =	{Mazurkiewicz, Bartosz and Kattenbeck, Markus and Giannopoulos, Ioannis},
  title =	{{Navigating Your Way! Increasing the Freedom of Choice During Wayfinding}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part II},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-208-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{208},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.II.9},
  URN =		{urn:nbn:de:0030-drops-147680},
  doi =		{10.4230/LIPIcs.GIScience.2021.II.9},
  annote =	{Keywords: Agent-based Simulation, Wayfinding, Free Choice Navigation}
}
Document
Not Arbitrary, Systematic! Average-Based Route Selection for Navigation Experiments

Authors: Bartosz Mazurkiewicz, Markus Kattenbeck, Peter Kiefer, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 177, 11th International Conference on Geographic Information Science (GIScience 2021) - Part I (2020)


Abstract
While studies on human wayfinding have seen increasing interest, the criteria for the choice of the routes used in these studies have usually not received particular attention. This paper presents a methodological framework which aims at filling this gap. Based on a thorough literature review on route choice criteria, we present an approach that supports wayfinding researchers in finding a route whose characteristics are as similar as possible to the population of all considered routes with a predefined length in a particular area. We provide evidence for the viability of our approach by means of both, synthetic and real-world data. The proposed method allows wayfinding researchers to justify their route choice decisions, and it enhances replicability of studies on human wayfinding. Furthermore, it allows to find similar routes in different geographical areas.

Cite as

Bartosz Mazurkiewicz, Markus Kattenbeck, Peter Kiefer, and Ioannis Giannopoulos. Not Arbitrary, Systematic! Average-Based Route Selection for Navigation Experiments. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part I. Leibniz International Proceedings in Informatics (LIPIcs), Volume 177, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{mazurkiewicz_et_al:LIPIcs.GIScience.2021.I.8,
  author =	{Mazurkiewicz, Bartosz and Kattenbeck, Markus and Kiefer, Peter and Giannopoulos, Ioannis},
  title =	{{Not Arbitrary, Systematic! Average-Based Route Selection for Navigation Experiments}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part I},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-166-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{177},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.I.8},
  URN =		{urn:nbn:de:0030-drops-130437},
  doi =		{10.4230/LIPIcs.GIScience.2021.I.8},
  annote =	{Keywords: Route Selection, Route Features, Human Wayfinding, Navigation, Experiments, Replicability}
}
Document
Track A: Algorithms, Complexity and Games
Geometric Multicut

Authors: Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, and Günter Rote

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study the following separation problem: Given a collection of colored objects in the plane, compute a shortest "fence" F, i.e., a union of curves of minimum total length, that separates every two objects of different colors. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to the well-studied multicut problem on graphs. We first give an O(n^4 log^3 n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colors and n corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we give a (2-4/3k)-approximation algorithm.

Cite as

Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, and Günter Rote. Geometric Multicut. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.ICALP.2019.9,
  author =	{Abrahamsen, Mikkel and Giannopoulos, Panos and L\"{o}ffler, Maarten and Rote, G\"{u}nter},
  title =	{{Geometric Multicut}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.9},
  URN =		{urn:nbn:de:0030-drops-105850},
  doi =		{10.4230/LIPIcs.ICALP.2019.9},
  annote =	{Keywords: multicut, clustering, Steiner tree}
}
Document
Intersections of Our World

Authors: Paolo Fogliaroni, Dominik Bucher, Nikola Jankovic, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
There are several situations where the type of a street intersections can become very important, especially in the case of navigation studies. The types of intersections affect the route complexity and this has to be accounted for, e.g., already during the experimental design phase of a navigation study. In this work we introduce a formal definition for intersection types and present a framework that allows for extracting information about the intersections of our planet. We present a case study that demonstrates the importance and necessity of being able to extract this information.

Cite as

Paolo Fogliaroni, Dominik Bucher, Nikola Jankovic, and Ioannis Giannopoulos. Intersections of Our World. In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fogliaroni_et_al:LIPIcs.GISCIENCE.2018.3,
  author =	{Fogliaroni, Paolo and Bucher, Dominik and Jankovic, Nikola and Giannopoulos, Ioannis},
  title =	{{Intersections of Our World}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.3},
  URN =		{urn:nbn:de:0030-drops-93310},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.3},
  annote =	{Keywords: intersection types, navigation, experimental design}
}
Document
Short Paper
Unfolding Urban Structures: Towards Route Prediction and Automated City Modeling (Short Paper)

Authors: Paolo Fogliaroni, Marvin Mc Cutchan, Gerhard Navratil, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
This paper extends previous work concerning intersection classification by including a new set of statistics that enable to describe the structure of a city at a higher level of detail. Namely, we suggest to analyze sequences of intersections of different types. We start with sequences of length two and present a probabilistic model to derive statistics for longer sequences. We validate the results by comparing them with real frequencies. Finally, we discuss how this work can contribute to the generation of virtual cities as well as to spatial configuration search.

Cite as

Paolo Fogliaroni, Marvin Mc Cutchan, Gerhard Navratil, and Ioannis Giannopoulos. Unfolding Urban Structures: Towards Route Prediction and Automated City Modeling (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 26:1-26:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fogliaroni_et_al:LIPIcs.GISCIENCE.2018.26,
  author =	{Fogliaroni, Paolo and Mc Cutchan, Marvin and Navratil, Gerhard and Giannopoulos, Ioannis},
  title =	{{Unfolding Urban Structures: Towards Route Prediction and Automated City Modeling}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{26:1--26:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.26},
  URN =		{urn:nbn:de:0030-drops-93548},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.26},
  annote =	{Keywords: intersection types, spatial structure, spatial modeling, graph theory}
}
Document
Short Paper
Gaze Sequences and Map Task Complexity (Short Paper)

Authors: Fabian Göbel, Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
As maps are visual representations of spatial context to communicate geographic information, analysis of gaze behavior is promising to improve map design. In this research we investigate the impact of map task complexity and different legend types on the visual attention of a user. With an eye tracking experiment we could show that the complexity of two map tasks can be measured and compared based on AOI sequences analysis. This knowledge can help to improve map design for static maps or in the context of interactive systems, create better map interfaces, that adapt to the user's current task.

Cite as

Fabian Göbel, Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal. Gaze Sequences and Map Task Complexity (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 30:1-30:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gobel_et_al:LIPIcs.GISCIENCE.2018.30,
  author =	{G\"{o}bel, Fabian and Kiefer, Peter and Giannopoulos, Ioannis and Raubal, Martin},
  title =	{{Gaze Sequences and Map Task Complexity}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{30:1--30:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.30},
  URN =		{urn:nbn:de:0030-drops-93587},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.30},
  annote =	{Keywords: eye tracking, sequence analysis, map task complexity}
}
Document
Short Paper
Geospatial Semantics for Spatial Prediction (Short Paper)

Authors: Marvin Mc Cutchan and Ioannis Giannopoulos

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
In this paper the potential of geospatial semantics for spatial predictions is explored. Therefore data from the LinkedGeoData platform is used to predict landcover classes described by the CORINE dataset. Geo-objects obtained from LinkedGeoData are described by an OWL ontology, which is utilized for the purpose of spatial prediction within this paper. This prediction is based on an association analysis which computes the collocations between the landcover classes and the semantically described geo-objects. The paper provides an analysis of the learned association rules and finally concludes with a discussion on the promising potential of geospatial semantics for spatial predictions, as well as potentially fruitful future research within this domain.

Cite as

Marvin Mc Cutchan and Ioannis Giannopoulos. Geospatial Semantics for Spatial Prediction (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 45:1-45:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{mccutchan_et_al:LIPIcs.GISCIENCE.2018.45,
  author =	{Mc Cutchan, Marvin and Giannopoulos, Ioannis},
  title =	{{Geospatial Semantics for Spatial Prediction}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{45:1--45:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.45},
  URN =		{urn:nbn:de:0030-drops-93731},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.45},
  annote =	{Keywords: Geospatial semantics, spatial prediction, machine learning, Linked Data}
}
Document
Timing of Pedestrian Navigation Instructions

Authors: Ioannis Giannopoulos, David Jonietz, Martin Raubal, Georgios Sarlas, and Lisa Stähli

Published in: LIPIcs, Volume 86, 13th International Conference on Spatial Information Theory (COSIT 2017)


Abstract
During pedestrian navigation in outdoor urban environments we often utilize assistance systems to support decision-making. These systems help wayfinders by providing relevant information withing the context of their surroundings, e.g., landmark-based instructions of the type "turn left at the church". Next to the instruction type and content, also the timing of the instruction must be considered in order to facilitate the wayfinding process. In this work we present our findings concerning the user and environmental factors that have an impact on the timing of instructions. We applied a survival analysis on data collected through an experiment in a realistic virtual environment in order to analyze the expected distance to the decision point until instructions are needed. The presented results can be used by navigation systems for instruction timing based on the characteristics of the current wayfinder and environment.

Cite as

Ioannis Giannopoulos, David Jonietz, Martin Raubal, Georgios Sarlas, and Lisa Stähli. Timing of Pedestrian Navigation Instructions. In 13th International Conference on Spatial Information Theory (COSIT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 86, pp. 16:1-16:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{giannopoulos_et_al:LIPIcs.COSIT.2017.16,
  author =	{Giannopoulos, Ioannis and Jonietz, David and Raubal, Martin and Sarlas, Georgios and St\"{a}hli, Lisa},
  title =	{{Timing of Pedestrian Navigation Instructions}},
  booktitle =	{13th International Conference on Spatial Information Theory (COSIT 2017)},
  pages =	{16:1--16:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-043-9},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{86},
  editor =	{Clementini, Eliseo and Donnelly, Maureen and Yuan, May and Kray, Christian and Fogliaroni, Paolo and Ballatore, Andrea},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2017.16},
  URN =		{urn:nbn:de:0030-drops-77606},
  doi =		{10.4230/LIPIcs.COSIT.2017.16},
  annote =	{Keywords: navigation, wayfinding, instructions, timing, survival analysis}
}
  • Refine by Author
  • 11 Giannopoulos, Ioannis
  • 5 Kattenbeck, Markus
  • 3 Alinaghi, Negar
  • 3 Kiefer, Peter
  • 3 Mazurkiewicz, Bartosz
  • Show More...

  • Refine by Classification
  • 4 Information systems → Geographic information systems
  • 3 Computing methodologies → Activity recognition and understanding
  • 3 Computing methodologies → Supervised learning by classification
  • 3 Information systems → Decision support systems
  • 3 Information systems → Location based services
  • Show More...

  • Refine by Keyword
  • 4 Wayfinding
  • 2 Experiments
  • 2 Human Wayfinding
  • 2 Machine Learning
  • 2 Navigation
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 4 2018
  • 2 2021
  • 2 2022
  • 1 2017
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail