3 Search Results for "Goodrich, Timothy D."


Document
Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

Authors: Erik D. Demaine, Timothy D. Goodrich, Kyle Kloster, Brian Lavallee, Quanquan C. Liu, Blair D. Sullivan, Ali Vakilian, and Andrew van der Poel

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC).

Cite as

Erik D. Demaine, Timothy D. Goodrich, Kyle Kloster, Brian Lavallee, Quanquan C. Liu, Blair D. Sullivan, Ali Vakilian, and Andrew van der Poel. Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 37:1-37:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.ESA.2019.37,
  author =	{Demaine, Erik D. and Goodrich, Timothy D. and Kloster, Kyle and Lavallee, Brian and Liu, Quanquan C. and Sullivan, Blair D. and Vakilian, Ali and van der Poel, Andrew},
  title =	{{Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{37:1--37:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.37},
  URN =		{urn:nbn:de:0030-drops-111583},
  doi =		{10.4230/LIPIcs.ESA.2019.37},
  annote =	{Keywords: structural rounding, graph editing, approximation algorithms}
}
Document
Optimally Sorting Evolving Data

Authors: Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We give optimal sorting algorithms in the evolving data framework, where an algorithm's input data is changing while the algorithm is executing. In this framework, instead of producing a final output, an algorithm attempts to maintain an output close to the correct output for the current state of the data, repeatedly updating its best estimate of a correct output over time. We show that a simple repeated insertion-sort algorithm can maintain an O(n) Kendall tau distance, with high probability, between a maintained list and an underlying total order of n items in an evolving data model where each comparison is followed by a swap between a random consecutive pair of items in the underlying total order. This result is asymptotically optimal, since there is an Omega(n) lower bound for Kendall tau distance for this problem. Our result closes the gap between this lower bound and the previous best algorithm for this problem, which maintains a Kendall tau distance of O(n log log n) with high probability. It also confirms previous experimental results that suggested that insertion sort tends to perform better than quicksort in practice.

Cite as

Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson. Optimally Sorting Evolving Data. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 81:1-81:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.ICALP.2018.81,
  author =	{Besa, Juan Jose and Devanny, William E. and Eppstein, David and Goodrich, Michael T. and Johnson, Timothy},
  title =	{{Optimally Sorting Evolving Data}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{81:1--81:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.81},
  URN =		{urn:nbn:de:0030-drops-90858},
  doi =		{10.4230/LIPIcs.ICALP.2018.81},
  annote =	{Keywords: Sorting, Evolving data, Insertion sort}
}
Document
Tree Drawings Revisited

Authors: Timothy M. Chan

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We make progress on a number of open problems concerning the area requirement for drawing trees on a grid. We prove that 1) every tree of size n (with arbitrarily large degree) has a straight-line drawing with area n2^{O(sqrt{log log n log log log n})}, improving the longstanding O(n log n) bound; 2) every tree of size n (with arbitrarily large degree) has a straight-line upward drawing with area n sqrt{log n}(log log n)^{O(1)}, improving the longstanding O(n log n) bound; 3) every binary tree of size n has a straight-line orthogonal drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Shin, Kim, and Chwa (1996) and Chan, Goodrich, Kosaraju, and Tamassia (1996); 4) every binary tree of size n has a straight-line order-preserving drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Garg and Rusu (2003); 5) every binary tree of size n has a straight-line orthogonal order-preserving drawing with area n2^{O(sqrt{log n})}, improving the O(n^{3/2}) previous bound by Frati (2007).

Cite as

Timothy M. Chan. Tree Drawings Revisited. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chan:LIPIcs.SoCG.2018.23,
  author =	{Chan, Timothy M.},
  title =	{{Tree Drawings Revisited}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.23},
  URN =		{urn:nbn:de:0030-drops-87364},
  doi =		{10.4230/LIPIcs.SoCG.2018.23},
  annote =	{Keywords: graph drawing, trees, recursion}
}
  • Refine by Author
  • 1 Besa, Juan Jose
  • 1 Chan, Timothy M.
  • 1 Demaine, Erik D.
  • 1 Devanny, William E.
  • 1 Eppstein, David
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Sorting and searching

  • Refine by Keyword
  • 1 Evolving data
  • 1 Insertion sort
  • 1 Sorting
  • 1 approximation algorithms
  • 1 graph drawing
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2018
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail