3 Search Results for "Groß, Martin"


Document
APPROX
On the Cost of Essentially Fair Clusterings

Authors: Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R. Schmidt, and Melanie Schmidt

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Clustering is a fundamental tool in data mining and machine learning. It partitions points into groups (clusters) and may be used to make decisions for each point based on its group. However, this process may harm protected (minority) classes if the clustering algorithm does not adequately represent them in desirable clusters - especially if the data is already biased. At NIPS 2017, Chierichetti et al. [Flavio Chierichetti et al., 2017] proposed a model for fair clustering requiring the representation in each cluster to (approximately) preserve the global fraction of each protected class. Restricting to two protected classes, they developed both a 4-approximation for the fair k-center problem and a O(t)-approximation for the fair k-median problem, where t is a parameter for the fairness model. For multiple protected classes, the best known result is a 14-approximation for fair k-center [Clemens Rösner and Melanie Schmidt, 2018]. We extend and improve the known results. Firstly, we give a 5-approximation for the fair k-center problem with multiple protected classes. Secondly, we propose a relaxed fairness notion under which we can give bicriteria constant-factor approximations for all of the classical clustering objectives k-center, k-supplier, k-median, k-means and facility location. The latter approximations are achieved by a framework that takes an arbitrary existing unfair (integral) solution and a fair (fractional) LP solution and combines them into an essentially fair clustering with a weakly supervised rounding scheme. In this way, a fair clustering can be established belatedly, in a situation where the centers are already fixed.

Cite as

Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R. Schmidt, and Melanie Schmidt. On the Cost of Essentially Fair Clusterings. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bercea_et_al:LIPIcs.APPROX-RANDOM.2019.18,
  author =	{Bercea, Ioana O. and Gro{\ss}, Martin and Khuller, Samir and Kumar, Aounon and R\"{o}sner, Clemens and Schmidt, Daniel R. and Schmidt, Melanie},
  title =	{{On the Cost of Essentially Fair Clusterings}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.18},
  URN =		{urn:nbn:de:0030-drops-112337},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.18},
  annote =	{Keywords: approximation, clustering, fairness, LP rounding}
}
Document
A Local-Search Algorithm for Steiner Forest

Authors: Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie Schmidt, and José Verschae

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
In the Steiner Forest problem, we are given a graph and a collection of source-sink pairs, and the goal is to find a subgraph of minimum total length such that all pairs are connected. The problem is APX-Hard and can be 2-approximated by, e.g., the elegant primal-dual algorithm of Agrawal, Klein, and Ravi from 1995. We give a local-search-based constant-factor approximation for the problem. Local search brings in new techniques to an area that has for long not seen any improvements and might be a step towards a combinatorial algorithm for the more general survivable network design problem. Moreover, local search was an essential tool to tackle the dynamic MST/Steiner Tree problem, whereas dynamic Steiner Forest is still wide open. It is easy to see that any constant factor local search algorithm requires steps that add/drop many edges together. We propose natural local moves which, at each step, either (a) add a shortest path in the current graph and then drop a bunch of inessential edges, or (b) add a set of edges to the current solution. This second type of moves is motivated by the potential function we use to measure progress, combining the cost of the solution with a penalty for each connected component. Our carefully-chosen local moves and potential function work in tandem to eliminate bad local minima that arise when using more traditional local moves. Our analysis first considers the case where the local optimum is a single tree, and shows optimality w.r.t. moves that add a single edge (and drop a set of edges) is enough to bound the locality gap. For the general case, we show how to "project" the optimal solution onto the different trees of the local optimum without incurring too much cost (and this argument uses optimality w.r.t. both kinds of moves), followed by a tree-by-tree argument. We hope both the potential function, and our analysis techniques will be useful to develop and analyze local-search algorithms in other contexts.

Cite as

Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie Schmidt, and José Verschae. A Local-Search Algorithm for Steiner Forest. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 31:1-31:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gro_et_al:LIPIcs.ITCS.2018.31,
  author =	{Gro{\ss}, Martin and Gupta, Anupam and Kumar, Amit and Matuschke, Jannik and Schmidt, Daniel R. and Schmidt, Melanie and Verschae, Jos\'{e}},
  title =	{{A Local-Search Algorithm for Steiner Forest}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{31:1--31:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.31},
  URN =		{urn:nbn:de:0030-drops-83134},
  doi =		{10.4230/LIPIcs.ITCS.2018.31},
  annote =	{Keywords: Local Search, Steiner Forest, Approximation Algorithms, Network Design}
}
Document
General Bounds for Incremental Maximization

Authors: Aaron Bernstein, Yann Disser, and Martin Groß

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k in N that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all k between the incremental solution after~$k$ steps and an optimum solution of cardinality k. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (b-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.

Cite as

Aaron Bernstein, Yann Disser, and Martin Groß. General Bounds for Incremental Maximization. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 43:1-43:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bernstein_et_al:LIPIcs.ICALP.2017.43,
  author =	{Bernstein, Aaron and Disser, Yann and Gro{\ss}, Martin},
  title =	{{General Bounds for Incremental Maximization}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{43:1--43:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.43},
  URN =		{urn:nbn:de:0030-drops-74650},
  doi =		{10.4230/LIPIcs.ICALP.2017.43},
  annote =	{Keywords: incremental optimization, maximization problems, greedy algorithm, competitive analysis, cardinality constraint}
}
  • Refine by Author
  • 3 Groß, Martin
  • 2 Schmidt, Daniel R.
  • 2 Schmidt, Melanie
  • 1 Bercea, Ioana O.
  • 1 Bernstein, Aaron
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Facility location and clustering
  • 1 Theory of computation → Rounding techniques
  • 1 Theory of computation → Unsupervised learning and clustering

  • Refine by Keyword
  • 1 Approximation Algorithms
  • 1 LP rounding
  • 1 Local Search
  • 1 Network Design
  • 1 Steiner Forest
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2017
  • 1 2018
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail