3 Search Results for "Gurke, Sebastian"


Document
Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach

Authors: Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We address the task of deriving fixpoint equations from modal logics characterizing behavioural equivalences and metrics (summarized under the term conformances). We rely on an earlier work that obtains Hennessy-Milner theorems as corollaries to a fixpoint preservation property along Galois connections between suitable lattices. We instantiate this to the setting of coalgebras, in which we spell out the compatibility property ensuring that we can derive a behaviour function whose greatest fixpoint coincides with the logical conformance. We then concentrate on the linear-time case, for which we study coalgebras based on the machine functor living in Eilenberg-Moore categories, a scenario for which we obtain a particularly simple logic and fixpoint equation. The theory is instantiated to concrete examples, both in the branching-time case (bisimilarity and behavioural metrics) and in the linear-time case (trace equivalences and trace distances).

Cite as

Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild. Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beohar_et_al:LIPIcs.STACS.2024.10,
  author =	{Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla and Forster, Jonas and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.10},
  URN =		{urn:nbn:de:0030-drops-197203},
  doi =		{10.4230/LIPIcs.STACS.2024.10},
  annote =	{Keywords: modal logics, coalgebras, behavioural equivalences, behavioural metrics, linear-time semantics, Eilenberg-Moore categories}
}
Document
Invited Talk
Approximating Fixpoints of Approximated Functions (Invited Talk)

Authors: Barbara König

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
There is a large body of work on fixpoint theorems, guaranteeing the existence of fixpoints for certain functions and providing methods for computing them. This includes for instance Banachs’s fixpoint theorem, the well-known result by Knaster-Tarski that is frequently employed in computer science and Kleene iteration. It is less clear how to compute fixpoints if the function whose (least) fixpoint we are interested in is not known exactly, but can only be obtained by a sequence of subsequently better approximations. This scenario occurs for instance in the context of reinforcement learning, where the probabilities of a Markov decision process (MDP) - for which one wants to learn a strategy - are unknown and can only be sampled. There are several solutions to this problem where the fixpoint computation (for determining the value vector and the optimal strategy) and the exploration of the model are interleaved. However, these methods work only well for discounted MDPs, that is in the contractive setting, but not for general MDPs, that is for non-expansive functions. After describing and motivating the problem, we will in particular concentrate on the non-expansive case. There are many interesting systems who value vectors can be obtained by determining the fixpoints of non-expansive functions. Other than contractive functions, they do not guarantee uniqueness of the fixpoint, making it more difficult to approximate the least fixpoint by methods other than Kleene iteration. And also Kleene iteration fails if the function under consideration is only approximated. We hence describe a dampened Mann iteration scheme for (higher-dimensional) functions on the reals that converges to the least fixpoint from everywhere. This scheme can also be adapted to functions that are approximated, under certain conditions. We will in particular study the case of MDPs and consider a related problem that arises when performing model-checking for quantitative mu-calculi, which involves the computation of nested fixpoints. This is joint work with Paolo Baldan, Sebastian Gurke, Tommaso Padoan and Florian Wittbold.

Cite as

Barbara König. Approximating Fixpoints of Approximated Functions (Invited Talk). In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, p. 4:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{konig:LIPIcs.CSL.2024.4,
  author =	{K\"{o}nig, Barbara},
  title =	{{Approximating Fixpoints of Approximated Functions}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{4:1--4:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.4},
  URN =		{urn:nbn:de:0030-drops-196469},
  doi =		{10.4230/LIPIcs.CSL.2024.4},
  annote =	{Keywords: fixpoints, approximation, Markov decision processes}
}
Document
Hennessy-Milner Theorems via Galois Connections

Authors: Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
We introduce a general and compositional, yet simple, framework that allows to derive soundness and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued) predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences) and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic and give a condition, called compatibility, that characterizes under which conditions a logically induced equivalence/metric is induced by a fixpoint equation. In particular, this framework allows to derive a new fixpoint characterization of directed trace metrics.

Cite as

Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing. Hennessy-Milner Theorems via Galois Connections. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{beohar_et_al:LIPIcs.CSL.2023.12,
  author =	{Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla},
  title =	{{Hennessy-Milner Theorems via Galois Connections}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.12},
  URN =		{urn:nbn:de:0030-drops-174735},
  doi =		{10.4230/LIPIcs.CSL.2023.12},
  annote =	{Keywords: behavioural equivalences and metrics, modal logics, Galois connections}
}
  • Refine by Author
  • 3 König, Barbara
  • 2 Beohar, Harsh
  • 2 Gurke, Sebastian
  • 2 Messing, Karla
  • 1 Forster, Jonas
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Modal and temporal logics
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Program reasoning
  • 1 Theory of computation → Reinforcement learning

  • Refine by Keyword
  • 2 modal logics
  • 1 Eilenberg-Moore categories
  • 1 Galois connections
  • 1 Markov decision processes
  • 1 approximation
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail