11 Search Results for "He, Zhang"


Document
Distance Queries over Dynamic Interval Graphs

Authors: Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set of intervals in which no interval is properly contained in another. For proper interval graphs, we design a linear space data structure which supports distance queries (computing the distance between two query vertices) and vertex insertion or deletion in O(lg n) worst-case time, where n is the number of vertices currently in G. Under incremental (insertion only) or decremental (deletion only) settings, we design linear space data structures that support distance queries in O(lg n) worst-case time and vertex insertion or deletion in O(lg n) amortized time, where n is the maximum number of vertices in the graph. Under fully dynamic settings, we design a data structure that represents an interval graph G in O(n) words of space to support distance queries in O(n lg n/S(n)) worst-case time and vertex insertion or deletion in O(S(n)+lg n) worst-case time, where n is the number of vertices currently in G and S(n) is an arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). This implies an O(n)-word solution with O(√{nlg n})-time support for both distance queries and updates. All four data structures can answer shortest path queries by reporting the vertices in the shortest path between two query vertices in O(lg n) worst-case time per vertex. We also study the hardness of supporting distance queries under updates over an intersection graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the problem of computing the diameter of a dynamic connected interval graph.

Cite as

Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang. Distance Queries over Dynamic Interval Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 18:1-18:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2023.18,
  author =	{Chen, Jingbang and He, Meng and Munro, J. Ian and Peng, Richard and Wu, Kaiyu and Zhang, Daniel J.},
  title =	{{Distance Queries over Dynamic Interval Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{18:1--18:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.18},
  URN =		{urn:nbn:de:0030-drops-193207},
  doi =		{10.4230/LIPIcs.ISAAC.2023.18},
  annote =	{Keywords: interval graph, proper interval graph, intersection graph, geometric intersection graph, distance oracle, distance query, shortest path query, dynamic graph}
}
Document
Framing in Communication: From Theories to Computation (Dagstuhl Seminar 22131)

Authors: Katarzyna Budzynska, Chris Reed, Manfred Stede, Benno Stein, and Zhang He

Published in: Dagstuhl Reports, Volume 12, Issue 3 (2022)


Abstract
Framing has become recognised as a powerful communication strategy for winning debates and shaping opinions and decisions. Entman defines framing as an action of selecting "some aspects of a perceived reality and make them more salient in a communicating text, in such a way as to promote a particular problem definition, causal interpretation, moral evaluation, and/or treatment recommendation for the item described". Instead of engaging in costly and difficult exchanges of argument and counter-argument, a politician or a journalist can then try to reframe a dialogue on, for example, fracking from economic benefits to environmental hazards, or a dialogue on abortion from pro-life to pro-choice. Introduced in 1960’s sociology, framing has been imported into communication sciences and media studies as an attempt to address the ways in which news is reported and, thus, a way in which to tackle manipulation and fake news. The topic has spread to other disciplines such as psychology, philosophy, semantics, pragmatics, political science, journalism, and, most recently – to computational linguistics and artificial intelligence. This seminar aims to pave the way to synthesising definitions developed in these theoretically and empirically driven areas and then to operationalise them in computational and applied areas by means of cross-disciplinary hands-on exchanges in facilitated discussions. Our goal is to support the development of innovative technologies, which can help us to quantify framing phenomena, to study framing at scale, and to deploy computational techniques in order to intervene against malicious attempts to influence opinions and decisions of the general public.

Cite as

Katarzyna Budzynska, Chris Reed, Manfred Stede, Benno Stein, and Zhang He. Framing in Communication: From Theories to Computation (Dagstuhl Seminar 22131). In Dagstuhl Reports, Volume 12, Issue 3, pp. 117-140, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{budzynska_et_al:DagRep.12.3.117,
  author =	{Budzynska, Katarzyna and Reed, Chris and Stede, Manfred and Stein, Benno and He, Zhang},
  title =	{{Framing in Communication: From Theories to Computation (Dagstuhl Seminar 22131)}},
  pages =	{117--140},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{3},
  editor =	{Budzynska, Katarzyna and Reed, Chris and Stede, Manfred and Stein, Benno and He, Zhang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.3.117},
  URN =		{urn:nbn:de:0030-drops-172713},
  doi =		{10.4230/DagRep.12.3.117},
  annote =	{Keywords: Communication Strategies, Discourse and Dialogue, Computational Argumentation, Natural Language Processing}
}
Document
Track A: Algorithms, Complexity and Games
Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution

Authors: Karl Bringmann and Alejandro Cassis

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We present new exact and approximation algorithms for 0-1-Knapsack and Unbounded Knapsack: - Exact Algorithm for 0-1-Knapsack: 0-1-Knapsack has known algorithms running in time Õ(n + min{n ⋅ OPT, n ⋅ W, OPT², W²}) [Bellman '57], where n is the number of items, W is the weight budget, and OPT is the optimal profit. We present an algorithm running in time Õ(n + (W + OPT)^{1.5}). This improves the running time in case n,W,OPT are roughly equal. - Exact Algorithm for Unbounded Knapsack: Unbounded Knapsack has known algorithms running in time Õ(n + min{n ⋅ p_max, n ⋅ w_max, p_max², w_max²}) [Axiotis, Tzamos '19, Jansen, Rohwedder '19, Chan, He '22], where n is the number of items, w_{max} is the largest weight of any item, and p_max is the largest profit of any item. We present an algorithm running in time Õ(n + (p_max + w_max)^{1.5}), giving a similar improvement as for 0-1-Knapsack. - Approximating Unbounded Knapsack with Resource Augmentation: Unbounded Knapsack has a known FPTAS with running time Õ(min{n/ε, n + 1/ε²}) [Jansen, Kraft '18]. We study weak approximation algorithms, which approximate the optimal profit but are allowed to overshoot the weight constraint (i.e. resource augmentation). We present the first approximation scheme for Unbounded Knapsack in this setting, achieving running time Õ(n + 1/ε^{1.5}). Along the way, we also give a simpler FPTAS with lower order improvement in the standard setting. For all of these problem settings the previously known results had matching conditional lower bounds. We avoid these lower bounds in the approximation setting by allowing resource augmentation, and in the exact setting by analyzing the time complexity in terms of weight and profit parameters (instead of only weight or only profit parameters). Our algorithms can be seen as reductions to Min-Plus-Convolution on monotone sequences with bounded entries. These structured instances of Min-Plus-Convolution can be solved in time O(n^1.5) [Chi, Duan, Xie, Zhang '22] (in contrast to the conjectured n^{2-o(1)} lower bound for the general case). We complement our results by showing reductions in the opposite direction, that is, we show that achieving our results with the constant 1.5 replaced by any constant < 2 implies subquadratic algorithms for Min-Plus-Convolution on monotone sequences with bounded entries.

Cite as

Karl Bringmann and Alejandro Cassis. Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.ICALP.2022.31,
  author =	{Bringmann, Karl and Cassis, Alejandro},
  title =	{{Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.31},
  URN =		{urn:nbn:de:0030-drops-163727},
  doi =		{10.4230/LIPIcs.ICALP.2022.31},
  annote =	{Keywords: Knapsack, Approximation Schemes, Fine-Grained Complexity, Min-Plus Convolution}
}
Document
Fooling an Unbounded Adversary with a Short Key, Repeatedly: The Honey Encryption Perspective

Authors: Xinze Li, Qiang Tang, and Zhenfeng Zhang

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
This article is motivated by the classical results from Shannon that put the simple and elegant one-time pad away from practice: key length has to be as large as message length and the same key could not be used more than once. In particular, we consider encryption algorithm to be defined relative to specific message distributions in order to trade for unconditional security. Such a notion named honey encryption (HE) was originally proposed for achieving best possible security for password based encryption where secrete key may have very small amount of entropy. Exploring message distributions as in HE indeed helps circumvent the classical restrictions on secret keys.We give a new and very simple honey encryption scheme satisfying the unconditional semantic security (for the targeted message distribution) in the standard model (all previous constructions are in the random oracle model, even for message recovery security only). Our new construction can be paired with an extremely simple yet "tighter" analysis, while all previous analyses (even for message recovery security only) were fairly complicated and require stronger assumptions. We also show a concrete instantiation further enables the secret key to be used for encrypting multiple messages.

Cite as

Xinze Li, Qiang Tang, and Zhenfeng Zhang. Fooling an Unbounded Adversary with a Short Key, Repeatedly: The Honey Encryption Perspective. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITC.2021.23,
  author =	{Li, Xinze and Tang, Qiang and Zhang, Zhenfeng},
  title =	{{Fooling an Unbounded Adversary with a Short Key, Repeatedly: The Honey Encryption Perspective}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{23:1--23:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.23},
  URN =		{urn:nbn:de:0030-drops-143425},
  doi =		{10.4230/LIPIcs.ITC.2021.23},
  annote =	{Keywords: unconditional security, information theoretic encryption, honey encryption}
}
Document
Track A: Algorithms, Complexity and Games
A Scaling Algorithm for Weighted f-Factors in General Graphs

Authors: Ran Duan, Haoqing He, and Tianyi Zhang

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study the maximum weight perfect f-factor problem on any general simple graph G = (V,E,ω) with positive integral edge weights w, and n = |V|, m = |E|. When we have a function f:V → ℕ_+ on vertices, a perfect f-factor is a generalized matching so that every vertex u is matched to exactly f(u) different edges. The previous best results on this problem have running time O(m f(V)) [Gabow 2018] or Õ(W(f(V))^2.373)) [Gabow and Sankowski 2013], where W is the maximum edge weight, and f(V) = ∑_{u ∈ V}f(u). In this paper, we present a scaling algorithm for this problem with running time Õ(mn^{2/3} log W). Previously this bound is only known for bipartite graphs [Gabow and Tarjan 1989]. The advantage is that the running time is independent of f(V), and consequently it breaks the Ω(mn) barrier for large f(V) even for the unweighted f-factor problem in general graphs.

Cite as

Ran Duan, Haoqing He, and Tianyi Zhang. A Scaling Algorithm for Weighted f-Factors in General Graphs. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 41:1-41:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2020.41,
  author =	{Duan, Ran and He, Haoqing and Zhang, Tianyi},
  title =	{{A Scaling Algorithm for Weighted f-Factors in General Graphs}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{41:1--41:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.41},
  URN =		{urn:nbn:de:0030-drops-124487},
  doi =		{10.4230/LIPIcs.ICALP.2020.41},
  annote =	{Keywords: Scaling Algorithm, f-Factors, General Graphs}
}
Document
Generalized List Decoding

Authors: Yihan Zhang, Amitalok J. Budkuley, and Sidharth Jaggi

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
This paper concerns itself with the question of list decoding for general adversarial channels, e.g., bit-flip (XOR) channels, erasure channels, AND (Z-) channels, OR channels, real adder channels, noisy typewriter channels, etc. We precisely characterize when exponential-sized (or positive rate) (L-1)-list decodable codes (where the list size L is a universal constant) exist for such channels. Our criterion essentially asserts that: For any given general adversarial channel, it is possible to construct positive rate (L-1)-list decodable codes if and only if the set of completely positive tensors of order-L with admissible marginals is not entirely contained in the order-L confusability set associated to the channel. The sufficiency is shown via random code construction (combined with expurgation or time-sharing). The necessity is shown by 1) extracting approximately equicoupled subcodes (generalization of equidistant codes) from any using hypergraph Ramsey’s theorem, and 2) significantly extending the classic Plotkin bound in coding theory to list decoding for general channels using duality between the completely positive tensor cone and the copositive tensor cone. In the proof, we also obtain a new fact regarding asymmetry of joint distributions, which may be of independent interest. Other results include 1) List decoding capacity with asymptotically large L for general adversarial channels; 2) A tight list size bound for most constant composition codes (generalization of constant weight codes); 3) Rederivation and demystification of Blinovsky’s [Blinovsky, 1986] characterization of the list decoding Plotkin points (threshold at which large codes are impossible) for bit-flip channels; 4) Evaluation of general bounds [Wang et al., 2019] for unique decoding in the error correction code setting.

Cite as

Yihan Zhang, Amitalok J. Budkuley, and Sidharth Jaggi. Generalized List Decoding. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 51:1-51:83, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.ITCS.2020.51,
  author =	{Zhang, Yihan and Budkuley, Amitalok J. and Jaggi, Sidharth},
  title =	{{Generalized List Decoding}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{51:1--51:83},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.51},
  URN =		{urn:nbn:de:0030-drops-117368},
  doi =		{10.4230/LIPIcs.ITCS.2020.51},
  annote =	{Keywords: Generalized Plotkin bound, general adversarial channels, equicoupled codes, random coding, completely positive tensors, copositive tensors, hypergraph Ramsey theory}
}
Document
On One-Round Discrete Voronoi Games

Authors: Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Let V be a multiset of n points in R^d, which we call voters, and let k >=slant 1 and l >=slant 1 be two given constants. We consider the following game, where two players P and Q compete over the voters in V: First, player P selects a set P of k points in R^d, and then player Q selects a set Q of l points in R^d. Player P wins a voter v in V iff dist(v,P) <=slant dist(v,Q), where dist(v,P) := min_{p in P} dist(v,p) and dist(v,Q) is defined similarly. Player P wins the game if he wins at least half the voters. The algorithmic problem we study is the following: given V, k, and l, how efficiently can we decide if player P has a winning strategy, that is, if P can select his k points such that he wins the game no matter where Q places her points. Banik et al. devised a singly-exponential algorithm for the game in R^1, for the case k=l. We improve their result by presenting the first polynomial-time algorithm for the game in R^1. Our algorithm can handle arbitrary values of k and l. We also show that if d >= 2, deciding if player P has a winning strategy is Sigma_2^P-hard when k and l are part of the input. Finally, we prove that for any dimension d, the problem is contained in the complexity class exists for all R, and we give an algorithm that works in polynomial time for fixed k and l.

Cite as

Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr. On One-Round Discrete Voronoi Games. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2019.37,
  author =	{de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Mehr, Mehran},
  title =	{{On One-Round Discrete Voronoi Games}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{37:1--37:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.37},
  URN =		{urn:nbn:de:0030-drops-115339},
  doi =		{10.4230/LIPIcs.ISAAC.2019.37},
  annote =	{Keywords: competitive facility location, plurality point}
}
Document
Path and Ancestor Queries over Trees with Multidimensional Weight Vectors

Authors: Meng He and Serikzhan Kazi

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
We consider an ordinal tree T on n nodes, with each node assigned a d-dimensional weight vector w in {1,2,...,n}^d, where d in N is a constant. We study path queries as generalizations of well-known {orthogonal range queries}, with one of the dimensions being tree topology rather than a linear order. Since in our definitions d only represents the number of dimensions of the weight vector without taking the tree topology into account, a path query in a tree with d-dimensional weight vectors generalize the corresponding (d+1)-dimensional orthogonal range query. We solve {ancestor dominance reporting} problem as a direct generalization of dominance reporting problem, in time O(lg^{d-1}{n}+k) and space of O(n lg^{d-2}n) words, where k is the size of the output, for d >= 2. We also achieve a tradeoff of O(n lg^{d-2+epsilon}{n}) words of space, with query time of O((lg^{d-1} n)/(lg lg n)^{d-2}+k), for the same problem, when d >= 3. We solve {path successor problem} in O(n lg^{d-1}{n}) words of space and time O(lg^{d-1+epsilon}{n}) for d >= 1 and an arbitrary constant epsilon > 0. We propose a solution to {path counting problem}, with O(n(lg{n}/lg lg{n})^{d-1}) words of space and O((lg{n}/lg lg{n})^{d}) query time, for d >= 1. Finally, we solve {path reporting problem} in O(n lg^{d-1+epsilon}{n}) words of space and O((lg^{d-1}{n})/(lg lg{n})^{d-2}+k) query time, for d >= 2. These results match or nearly match the best tradeoffs of the respective range queries. We are also the first to solve path successor even for d = 1.

Cite as

Meng He and Serikzhan Kazi. Path and Ancestor Queries over Trees with Multidimensional Weight Vectors. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 45:1-45:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.ISAAC.2019.45,
  author =	{He, Meng and Kazi, Serikzhan},
  title =	{{Path and Ancestor Queries over Trees with Multidimensional Weight Vectors}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{45:1--45:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.45},
  URN =		{urn:nbn:de:0030-drops-115415},
  doi =		{10.4230/LIPIcs.ISAAC.2019.45},
  annote =	{Keywords: path queries, range queries, algorithms, data structures, theory}
}
Document
On Approximate Range Mode and Range Selection

Authors: Hicham El-Zein, Meng He, J. Ian Munro, Yakov Nekrich, and Bryce Sandlund

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
For any epsilon in (0,1), a (1+epsilon)-approximate range mode query asks for the position of an element whose frequency in the query range is at most a factor (1+epsilon) smaller than the true mode. For this problem, we design a data structure occupying O(n/epsilon) bits of space to answer queries in O(lg(1/epsilon)) time. This is an encoding data structure which does not require access to the input sequence; the space cost of this structure is asymptotically optimal for constant epsilon as we also prove a matching lower bound. Furthermore, our solution improves the previous best result of Greve et al. (Cell Probe Lower Bounds and Approximations for Range Mode, ICALP'10) by saving the space cost by a factor of lg n while achieving the same query time. In dynamic settings, we design an O(n)-word data structure that answers queries in O(lg n /lg lg n) time and supports insertions and deletions in O(lg n) time, for any constant epsilon in (0,1); the bounds for non-constant epsilon = o(1) are also given in the paper. This is the first result on dynamic approximate range mode; it can also be used to obtain the first static data structure for approximate 3-sided range mode queries in two dimensions. Another problem we consider is approximate range selection. For any alpha in (0,1/2), an alpha-approximate range selection query asks for the position of an element whose rank in the query range is in [k - alpha s, k + alpha s], where k is a rank given by the query and s is the size of the query range. When alpha is a constant, we design an O(n)-bit encoding data structure that can answer queries in constant time and prove this space cost is asymptotically optimal. The previous best result by Krizanc et al. (Range Mode and Range Median Queries on Lists and Trees, Nordic Journal of Computing, 2005) uses O(n lg n) bits, or O(n) words, to achieve constant approximation for range median only. Thus we not only improve the space cost, but also provide support for any arbitrary k given at query time. We also analyse our solutions for non-constant alpha.

Cite as

Hicham El-Zein, Meng He, J. Ian Munro, Yakov Nekrich, and Bryce Sandlund. On Approximate Range Mode and Range Selection. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 57:1-57:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{elzein_et_al:LIPIcs.ISAAC.2019.57,
  author =	{El-Zein, Hicham and He, Meng and Munro, J. Ian and Nekrich, Yakov and Sandlund, Bryce},
  title =	{{On Approximate Range Mode and Range Selection}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{57:1--57:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.57},
  URN =		{urn:nbn:de:0030-drops-115531},
  doi =		{10.4230/LIPIcs.ISAAC.2019.57},
  annote =	{Keywords: data structures, approximate range query, range mode, range median}
}
Document
Track A: Algorithms, Complexity and Games
Querying a Matrix Through Matrix-Vector Products

Authors: Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We consider algorithms with access to an unknown matrix M in F^{n x d} via matrix-vector products, namely, the algorithm chooses vectors v^1, ..., v^q, and observes Mv^1, ..., Mv^q. Here the v^i can be randomized as well as chosen adaptively as a function of Mv^1, ..., Mv^{i-1}. Motivated by applications of sketching in distributed computation, linear algebra, and streaming models, as well as connections to areas such as communication complexity and property testing, we initiate the study of the number q of queries needed to solve various fundamental problems. We study problems in three broad categories, including linear algebra, statistics problems, and graph problems. For example, we consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus algorithms that can query vectors on both the left and the right. We also show separations depending on the underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph. Surprisingly, this fundamental model does not appear to have been studied on its own, and we believe a thorough investigation of problems in this model would be beneficial to a number of different application areas.

Cite as

Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. Querying a Matrix Through Matrix-Vector Products. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 94:1-94:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ICALP.2019.94,
  author =	{Sun, Xiaoming and Woodruff, David P. and Yang, Guang and Zhang, Jialin},
  title =	{{Querying a Matrix Through Matrix-Vector Products}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{94:1--94:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.94},
  URN =		{urn:nbn:de:0030-drops-106709},
  doi =		{10.4230/LIPIcs.ICALP.2019.94},
  annote =	{Keywords: Communication complexity, linear algebra, sketching}
}
Document
Parameterized complexity of games with monotonically ordered omega-regular objectives

Authors: Véronique Bruyère, Quentin Hautem, and Jean-François Raskin

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
In recent years, two-player zero-sum games with multiple objectives have received a lot of interest as a model for the synthesis of complex reactive systems. In this framework, Player 1 wins if he can ensure that all objectives are satisfied against any behavior of Player 2. When this is not possible to satisfy all the objectives at once, an alternative is to use some preorder on the objectives according to which subset of objectives Player 1 wants to satisfy. For example, it is often natural to provide more significance to one objective over another, a situation that can be modelled with lexicographically ordered objectives for instance. Inspired by recent work on concurrent games with multiple omega-regular objectives by Bouyer et al., we investigate in detail turned-based games with monotonically ordered and omega-regular objectives. We study the threshold problem which asks whether player 1 can ensure a payoff greater than or equal to a given threshold w.r.t. a given monotonic preorder. As the number of objectives is usually much smaller than the size of the game graph, we provide a parametric complexity analysis and we show that our threshold problem is in FPT for all monotonic preorders and all classical types of omega-regular objectives. We also provide polynomial time algorithms for Büchi, coBüchi and explicit Muller objectives for a large subclass of monotonic preorders that includes among others the lexicographic preorder. In the particular case of lexicographic preorder, we also study the complexity of computing the values and the memory requirements of optimal strategies.

Cite as

Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. Parameterized complexity of games with monotonically ordered omega-regular objectives. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2018.29,
  author =	{Bruy\`{e}re, V\'{e}ronique and Hautem, Quentin and Raskin, Jean-Fran\c{c}ois},
  title =	{{Parameterized complexity of games with monotonically ordered omega-regular objectives}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.29},
  URN =		{urn:nbn:de:0030-drops-95673},
  doi =		{10.4230/LIPIcs.CONCUR.2018.29},
  annote =	{Keywords: two-player zero-sum games played on graphs, omega-regular objectives, ordered objectives, parameterized complexity}
}
  • Refine by Author
  • 3 He, Meng
  • 2 Munro, J. Ian
  • 1 Bringmann, Karl
  • 1 Bruyère, Véronique
  • 1 Budkuley, Amitalok J.
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Data structures design and analysis
  • 2 Information systems → Data structures
  • 2 Theory of computation → Algorithmic game theory
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Computing methodologies → Discourse, dialogue and pragmatics
  • Show More...

  • Refine by Keyword
  • 2 data structures
  • 1 Approximation Schemes
  • 1 Communication Strategies
  • 1 Communication complexity
  • 1 Computational Argumentation
  • Show More...

  • Refine by Type
  • 11 document

  • Refine by Publication Year
  • 4 2019
  • 2 2020
  • 2 2022
  • 1 2018
  • 1 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail