2 Search Results for "Hendrickson, Dylan H."


Document
Characterizing Universal Reconfigurability of Modular Pivoting Robots

Authors: Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are "pivots", where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using O(n³) monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN'18] that we consider of independent interest.

Cite as

Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing Universal Reconfigurability of Modular Pivoting Robots. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.SoCG.2021.10,
  author =	{A. Akitaya, Hugo and Demaine, Erik D. and Gonczi, Andrei and Hendrickson, Dylan H. and Hesterberg, Adam and Korman, Matias and Korten, Oliver and Lynch, Jayson and Parada, Irene and Sacrist\'{a}n, Vera},
  title =	{{Characterizing Universal Reconfigurability of Modular Pivoting Robots}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.10},
  URN =		{urn:nbn:de:0030-drops-138094},
  doi =		{10.4230/LIPIcs.SoCG.2021.10},
  annote =	{Keywords: reconfiguration, geometric algorithm, PSPACE-hardness, pivoting hexagons, pivoting squares, modular robots}
}
Document
Toward a General Complexity Theory of Motion Planning: Characterizing Which Gadgets Make Games Hard

Authors: Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We begin a general theory for characterizing the computational complexity of motion planning of robot(s) through a graph of "gadgets", where each gadget has its own state defining a set of allowed traversals which in turn modify the gadget’s state. We study two general families of such gadgets within this theory, one which naturally leads to motion planning problems with polynomially bounded solutions, and another which leads to polynomially unbounded (potentially exponential) solutions. We also study a range of competitive game-theoretic scenarios, from one player controlling one robot to teams of players each controlling their own robot and racing to achieve their team’s goal. Under certain restrictions on these gadgets, we fully characterize the complexity of bounded 1-player motion planning (NL vs. NP-complete), unbounded 1-player motion planning (NL vs. PSPACE-complete), and bounded 2-player motion planning (P vs. PSPACE-complete), and we partially characterize the complexity of unbounded 2-player motion planning (P vs. EXPTIME-complete), bounded 2-team motion planning (P vs. NEXPTIME-complete), and unbounded 2-team motion planning (P vs. undecidable). These results can be seen as an alternative to Constraint Logic (which has already proved useful as a basis for hardness reductions), providing a wide variety of agent-based gadgets, any one of which suffices to prove a problem hard.

Cite as

Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Toward a General Complexity Theory of Motion Planning: Characterizing Which Gadgets Make Games Hard. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 62:1-62:42, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.ITCS.2020.62,
  author =	{Demaine, Erik D. and Hendrickson, Dylan H. and Lynch, Jayson},
  title =	{{Toward a General Complexity Theory of Motion Planning: Characterizing Which Gadgets Make Games Hard}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{62:1--62:42},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.62},
  URN =		{urn:nbn:de:0030-drops-117478},
  doi =		{10.4230/LIPIcs.ITCS.2020.62},
  annote =	{Keywords: motion planning, computational complexity, NP, PSPACE, EXP, NEXP, undecidability, games}
}
  • Refine by Author
  • 2 Demaine, Erik D.
  • 2 Hendrickson, Dylan H.
  • 2 Lynch, Jayson
  • 1 A. Akitaya, Hugo
  • 1 Gonczi, Andrei
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Problems, reductions and completeness

  • Refine by Keyword
  • 1 EXP
  • 1 NEXP
  • 1 NP
  • 1 PSPACE
  • 1 PSPACE-hardness
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail