3 Search Results for "Hershberger, John"


Document
The Geodesic Edge Center of a Simple Polygon

Authors: Anna Lubiw and Anurag Murty Naredla

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry, 1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh [Discrete & Computational Geometry, 2016]. The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge Voronoi diagram restricted to the polygon boundary.

Cite as

Anna Lubiw and Anurag Murty Naredla. The Geodesic Edge Center of a Simple Polygon. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lubiw_et_al:LIPIcs.SoCG.2023.49,
  author =	{Lubiw, Anna and Naredla, Anurag Murty},
  title =	{{The Geodesic Edge Center of a Simple Polygon}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.49},
  URN =		{urn:nbn:de:0030-drops-178994},
  doi =		{10.4230/LIPIcs.SoCG.2023.49},
  annote =	{Keywords: geodesic center of polygon, farthest edges, farthest-segment Voronoi diagram}
}
Document
Shortest Paths in the Plane with Obstacle Violations

Authors: John Hershberger, Neeraj Kumar, and Subhash Suri

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
We study the problem of finding shortest paths in the plane among h convex obstacles, where the path is allowed to pass through (violate) up to k obstacles, for k <= h. Equivalently, the problem is to find shortest paths that become obstacle-free if k obstacles are removed from the input. Given a fixed source point s, we show how to construct a map, called a shortest k-path map, so that all destinations in the same region of the map have the same combinatorial shortest path passing through at most k obstacles. We prove a tight bound of Theta(kn) on the size of this map, and show that it can be computed in O(k^2 n log n) time, where n is the total number of obstacle vertices.

Cite as

John Hershberger, Neeraj Kumar, and Subhash Suri. Shortest Paths in the Plane with Obstacle Violations. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{hershberger_et_al:LIPIcs.ESA.2017.49,
  author =	{Hershberger, John and Kumar, Neeraj and Suri, Subhash},
  title =	{{Shortest Paths in the Plane with Obstacle Violations}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.49},
  URN =		{urn:nbn:de:0030-drops-78413},
  doi =		{10.4230/LIPIcs.ESA.2017.49},
  annote =	{Keywords: Shortest paths, Polygonal obstacles, Continuous Dijkstra, Obstacle crossing, Visibility}
}
Document
Hyperplane Separability and Convexity of Probabilistic Point Sets

Authors: Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
We describe an O(n^d) time algorithm for computing the exact probability that two d-dimensional probabilistic point sets are linearly separable, for any fixed d >= 2. A probabilistic point in d-space is the usual point, but with an associated (independent) probability of existence. We also show that the d-dimensional separability problem is equivalent to a (d+1)-dimensional convex hull membership problem, which asks for the probability that a query point lies inside the convex hull of n probabilistic points. Using this reduction, we improve the current best bound for the convex hull membership by a factor of n [Agarwal et al., ESA, 2014]. In addition, our algorithms can handle "input degeneracies" in which more than k+1 points may lie on a k-dimensional subspace, thus resolving an open problem in [Agarwal et al., ESA, 2014]. Finally, we prove lower bounds for the separability problem via a reduction from the k-SUM problem, which shows in particular that our O(n^2) algorithms for 2-dimensional separability and 3-dimensional convex hull membership are nearly optimal.

Cite as

Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri. Hyperplane Separability and Convexity of Probabilistic Point Sets. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fink_et_al:LIPIcs.SoCG.2016.38,
  author =	{Fink, Martin and Hershberger, John and Kumar, Nirman and Suri, Subhash},
  title =	{{Hyperplane Separability and Convexity of Probabilistic Point Sets}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.38},
  URN =		{urn:nbn:de:0030-drops-59305},
  doi =		{10.4230/LIPIcs.SoCG.2016.38},
  annote =	{Keywords: probabilistic separability, uncertain data, 3-SUM hardness, topological sweep, hyperplane separation, multi-dimensional data}
}
  • Refine by Author
  • 2 Hershberger, John
  • 2 Suri, Subhash
  • 1 Fink, Martin
  • 1 Kumar, Neeraj
  • 1 Kumar, Nirman
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 1 3-SUM hardness
  • 1 Continuous Dijkstra
  • 1 Obstacle crossing
  • 1 Polygonal obstacles
  • 1 Shortest paths
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail