2 Search Results for "Hershkowitz, David Ellis"


Document
Track A: Algorithms, Complexity and Games
Near-Optimal Schedules for Simultaneous Multicasts

Authors: Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We study the store-and-forward packet routing problem for simultaneous multicasts, in which multiple packets have to be forwarded along given trees as fast as possible. This is a natural generalization of the seminal work of Leighton, Maggs and Rao, which solved this problem for unicasts, i.e. the case where all trees are paths. They showed the existence of asymptotically optimal O(C + D)-length schedules, where the congestion C is the maximum number of packets sent over an edge and the dilation D is the maximum depth of a tree. This improves over the trivial O(CD) length schedules. We prove a lower bound for multicasts, which shows that there do not always exist schedules of non-trivial length, o(CD). On the positive side, we construct O(C+D+log² n)-length schedules in any n-node network. These schedules are near-optimal, since our lower bound shows that this length cannot be improved to O(C+D) + o(log n).

Cite as

Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. Near-Optimal Schedules for Simultaneous Multicasts. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 78:1-78:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{haeupler_et_al:LIPIcs.ICALP.2021.78,
  author =	{Haeupler, Bernhard and Hershkowitz, D. Ellis and Wajc, David},
  title =	{{Near-Optimal Schedules for Simultaneous Multicasts}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{78:1--78:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.78},
  URN =		{urn:nbn:de:0030-drops-141471},
  doi =		{10.4230/LIPIcs.ICALP.2021.78},
  annote =	{Keywords: Packet routing, multicast, scheduling algorithms}
}
Document
APPROX
Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty

Authors: David Ellis Hershkowitz, R. Ravi, and Sahil Singla

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
In this paper we study how to optimally balance cheap inflexible resources with more expensive, reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the MinEMax model to study "build versus rent" problems. In our model different scenarios appear independently. Before knowing which scenarios appear, we may build rigid resources that cannot be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent reconfigurable but expensive resources to use across scenarios. Although computing the objective in our model might seem to require enumerating exponentially-many possibilities, we show it is well estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this objective we design algorithms that approximately-optimally balance inflexible and reconfigurable resources for several NP-hard covering problems. For example, we study variants of minimum spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate between previous demand-robust and stochastic two-stage problems.

Cite as

David Ellis Hershkowitz, R. Ravi, and Sahil Singla. Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hershkowitz_et_al:LIPIcs.APPROX-RANDOM.2019.4,
  author =	{Hershkowitz, David Ellis and Ravi, R. and Singla, Sahil},
  title =	{{Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.4},
  URN =		{urn:nbn:de:0030-drops-112196},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.4},
  annote =	{Keywords: Approximation Algorithms, Optimization Under Uncertainty, Two-Stage Optimization, Expected Max}
}
  • Refine by Author
  • 1 Haeupler, Bernhard
  • 1 Hershkowitz, D. Ellis
  • 1 Hershkowitz, David Ellis
  • 1 Ravi, R.
  • 1 Singla, Sahil
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Routing and network design problems
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Distributed algorithms
  • 1 Theory of computation → Facility location and clustering
  • 1 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 1 Approximation Algorithms
  • 1 Expected Max
  • 1 Optimization Under Uncertainty
  • 1 Packet routing
  • 1 Two-Stage Optimization
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail