3 Search Results for "Huang, Yu"


Document
Track A: Algorithms, Complexity and Games
Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning

Authors: Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.

Cite as

Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu. Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{brandao_et_al:LIPIcs.ICALP.2019.27,
  author =	{Brand\~{a}o, Fernando G. S. L. and Kalev, Amir and Li, Tongyang and Lin, Cedric Yen-Yu and Svore, Krysta M. and Wu, Xiaodi},
  title =	{{Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.27},
  URN =		{urn:nbn:de:0030-drops-106036},
  doi =		{10.4230/LIPIcs.ICALP.2019.27},
  annote =	{Keywords: quantum algorithms, semidefinite program, convex optimization}
}
Document
Specification and Implementation of Replicated List: The Jupiter Protocol Revisited

Authors: Hengfeng Wei, Yu Huang, and Jian Lu

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
The replicated list object is frequently used to model the core functionality of replicated collaborative text editing systems. Since 1989, the convergence property has been a common specification of a replicated list object. Recently, Attiya et al. proposed the strong/weak list specification and conjectured that the well-known Jupiter protocol satisfies the weak list specification. The major obstacle to proving this conjecture is the mismatch between the global property on all replica states prescribed by the specification and the local view each replica maintains in Jupiter using data structures like 1D buffer or 2D state space. To address this issue, we propose CJupiter (Compact Jupiter) based on a novel data structure called n-ary ordered state space for a replicated client/server system with n clients. At a high level, CJupiter maintains only a single n-ary ordered state space which encompasses exactly all states of each replica. We prove that CJupiter and Jupiter are equivalent and that CJupiter satisfies the weak list specification, thus solving the conjecture above.

Cite as

Hengfeng Wei, Yu Huang, and Jian Lu. Specification and Implementation of Replicated List: The Jupiter Protocol Revisited. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{wei_et_al:LIPIcs.OPODIS.2018.12,
  author =	{Wei, Hengfeng and Huang, Yu and Lu, Jian},
  title =	{{Specification and Implementation of Replicated List: The Jupiter Protocol Revisited}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.12},
  URN =		{urn:nbn:de:0030-drops-100720},
  doi =		{10.4230/LIPIcs.OPODIS.2018.12},
  annote =	{Keywords: Collaborative text editing systems, Replicated list, Concurrency control, Strong/weak list specification, Operational transformation, Jupiter protocol}
}
Document
Envy-free Matchings with Lower Quotas

Authors: Yu Yokoi

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
While every instance of the Hospitals/Residents problem admits a stable matching, the problem with lower quotas (HR-LQ) has instances with no stable matching. For such an instance, we expect the existence of an envy-free matching, which is a relaxation of a stable matching preserving a kind of fairness property. In this paper, we investigate the existence of an envy-free matching in several settings, in which hospitals have lower quotas. We first provide an algorithm that decides whether a given HR-LQ instance has an envy-free matching or not. Then, we consider envy-freeness in the Classified Stable Matching model due to Huang (2010), i.e., each hospital has lower and upper quotas on subsets of doctors. We show that, for this model, deciding the existence of an envy-free matching is NP-hard in general, but solvable in polynomial time if quotas are paramodular.

Cite as

Yu Yokoi. Envy-free Matchings with Lower Quotas. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 67:1-67:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{yokoi:LIPIcs.ISAAC.2017.67,
  author =	{Yokoi, Yu},
  title =	{{Envy-free Matchings with Lower Quotas}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{67:1--67:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.67},
  URN =		{urn:nbn:de:0030-drops-82205},
  doi =		{10.4230/LIPIcs.ISAAC.2017.67},
  annote =	{Keywords: stable matchings, envy-free matchings, lower quotas, polynomial time algorithm, paramodular functions}
}
  • Refine by Author
  • 1 Brandão, Fernando G. S. L.
  • 1 Huang, Yu
  • 1 Kalev, Amir
  • 1 Li, Tongyang
  • 1 Lin, Cedric Yen-Yu
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Distributed computing methodologies
  • 1 Human-centered computing → Collaborative and social computing systems and tools
  • 1 Software and its engineering → Correctness
  • 1 Theory of computation → Convex optimization
  • 1 Theory of computation → Quantum query complexity
  • Show More...

  • Refine by Keyword
  • 1 Collaborative text editing systems
  • 1 Concurrency control
  • 1 Jupiter protocol
  • 1 Operational transformation
  • 1 Replicated list
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2019
  • 1 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail