2 Search Results for "Hugunin, Jasper"


Document
Why Not W?

Authors: Jasper Hugunin

Published in: LIPIcs, Volume 188, 26th International Conference on Types for Proofs and Programs (TYPES 2020)


Abstract
In an extensional setting, 𝚆 types are sufficient to construct a broad class of inductive types, but in intensional type theory the standard construction of even the natural numbers does not satisfy the required induction principle. In this paper, we show how to refine the standard construction of inductive types such that the induction principle is provable and computes as expected in intensional type theory without using function extensionality. We extend this by constructing from 𝚆 an internal universe of codes for inductive types, such that this universe is itself an inductive type described by a code in the next larger universe. We use this universe to mechanize and internalize our refined construction.

Cite as

Jasper Hugunin. Why Not W?. In 26th International Conference on Types for Proofs and Programs (TYPES 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 188, pp. 8:1-8:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hugunin:LIPIcs.TYPES.2020.8,
  author =	{Hugunin, Jasper},
  title =	{{Why Not W?}},
  booktitle =	{26th International Conference on Types for Proofs and Programs (TYPES 2020)},
  pages =	{8:1--8:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-182-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{188},
  editor =	{de'Liguoro, Ugo and Berardi, Stefano and Altenkirch, Thorsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2020.8},
  URN =		{urn:nbn:de:0030-drops-138876},
  doi =		{10.4230/LIPIcs.TYPES.2020.8},
  annote =	{Keywords: dependent types, intensional type theory, inductive types, W types}
}
Document
Ornaments for Proof Reuse in Coq

Authors: Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Ornaments express relations between inductive types with the same inductive structure. We implement fully automatic proof reuse for a particular class of ornaments in a Coq plugin, and show how such a tool can give programmers the rewards of using indexed inductive types while automating away many of the costs. The plugin works directly on Coq code; it is the first ornamentation tool for a non-embedded dependently typed language. It is also the first tool to automatically identify ornaments: To lift a function or proof, the user must provide only the source type, the destination type, and the source function or proof. In taking advantage of the mathematical properties of ornaments, our approach produces faster functions and smaller terms than a more general approach to proof reuse in Coq.

Cite as

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for Proof Reuse in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ringer_et_al:LIPIcs.ITP.2019.26,
  author =	{Ringer, Talia and Yazdani, Nathaniel and Leo, John and Grossman, Dan},
  title =	{{Ornaments for Proof Reuse in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.26},
  URN =		{urn:nbn:de:0030-drops-110816},
  doi =		{10.4230/LIPIcs.ITP.2019.26},
  annote =	{Keywords: ornaments, proof reuse, proof automation}
}
  • Refine by Author
  • 1 Grossman, Dan
  • 1 Hugunin, Jasper
  • 1 Leo, John
  • 1 Ringer, Talia
  • 1 Yazdani, Nathaniel

  • Refine by Classification
  • 1 Software and its engineering → Formal software verification
  • 1 Theory of computation → Type theory

  • Refine by Keyword
  • 1 W types
  • 1 dependent types
  • 1 inductive types
  • 1 intensional type theory
  • 1 ornaments
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail