2 Search Results for "Ishihata, Masakazu"


Document
Computing NP-Hard Repetitiveness Measures via MAX-SAT

Authors: Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda, Dominik Köppl, and Takaaki Nishimoto

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Repetitiveness measures reveal profound characteristics of datasets, and give rise to compressed data structures and algorithms working in compressed space. Alas, the computation of some of these measures is NP-hard, and straight-forward computation is infeasible for datasets of even small sizes. Three such measures are the smallest size of a string attractor, the smallest size of a bidirectional macro scheme, and the smallest size of a straight-line program. While a vast variety of implementations for heuristically computing approximations exist, exact computation of these measures has received little to no attention. In this paper, we present MAX-SAT formulations that provide the first non-trivial implementations for exact computation of smallest string attractors, smallest bidirectional macro schemes, and smallest straight-line programs. Computational experiments show that our implementations work for texts of length up to a few hundred for straight-line programs and bidirectional macro schemes, and texts even over a million for string attractors.

Cite as

Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda, Dominik Köppl, and Takaaki Nishimoto. Computing NP-Hard Repetitiveness Measures via MAX-SAT. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:LIPIcs.ESA.2022.12,
  author =	{Bannai, Hideo and Goto, Keisuke and Ishihata, Masakazu and Kanda, Shunsuke and K\"{o}ppl, Dominik and Nishimoto, Takaaki},
  title =	{{Computing NP-Hard Repetitiveness Measures via MAX-SAT}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.12},
  URN =		{urn:nbn:de:0030-drops-169505},
  doi =		{10.4230/LIPIcs.ESA.2022.12},
  annote =	{Keywords: repetitiveness measures, string attractor, bidirectional macro scheme}
}
Document
Solving and Generating Nagareru Puzzles

Authors: Masakazu Ishihata and Fumiya Tokumasu

Published in: LIPIcs, Volume 233, 20th International Symposium on Experimental Algorithms (SEA 2022)


Abstract
Solving paper-and-pencil puzzles is fun for people, and their analysis is also an essential issue in computational complexity theory. There are some practically efficient solvers for some NP-complete puzzles; however, the automatic generation of interesting puzzle instances still stands out as a complex problem because it requires checking whether the generated instance has a unique solution. In this paper, we focus on a puzzle called Nagareru and propose two methods: one is for implicitly enumerating all the solutions of its instance, and the other is for efficiently generating an instance with a unique solution. The former constructs a ZDD that implicitly represents all the solutions. The latter employs the ZDD-based solver as a building block to check the uniqueness of the solution of generated instances. We experimentally showed that the ZDD-based solver was drastically faster than a CSP-based solver, and our generation method created an interesting instance in a reasonable time.

Cite as

Masakazu Ishihata and Fumiya Tokumasu. Solving and Generating Nagareru Puzzles. In 20th International Symposium on Experimental Algorithms (SEA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 233, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ishihata_et_al:LIPIcs.SEA.2022.2,
  author =	{Ishihata, Masakazu and Tokumasu, Fumiya},
  title =	{{Solving and Generating Nagareru Puzzles}},
  booktitle =	{20th International Symposium on Experimental Algorithms (SEA 2022)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-251-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{233},
  editor =	{Schulz, Christian and U\c{c}ar, Bora},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2022.2},
  URN =		{urn:nbn:de:0030-drops-165366},
  doi =		{10.4230/LIPIcs.SEA.2022.2},
  annote =	{Keywords: Paper-and-pencil puzzle, SAT, CSP, ZDD}
}
  • Refine by Author
  • 2 Ishihata, Masakazu
  • 1 Bannai, Hideo
  • 1 Goto, Keisuke
  • 1 Kanda, Shunsuke
  • 1 Köppl, Dominik
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Combinatorial algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Generating random combinatorial structures

  • Refine by Keyword
  • 1 CSP
  • 1 Paper-and-pencil puzzle
  • 1 SAT
  • 1 ZDD
  • 1 bidirectional macro scheme
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail