69 Search Results for "Jansen, David N."


Document
Track A: Algorithms, Complexity and Games
Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution

Authors: Karl Bringmann and Alejandro Cassis

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We present new exact and approximation algorithms for 0-1-Knapsack and Unbounded Knapsack: - Exact Algorithm for 0-1-Knapsack: 0-1-Knapsack has known algorithms running in time Õ(n + min{n ⋅ OPT, n ⋅ W, OPT², W²}) [Bellman '57], where n is the number of items, W is the weight budget, and OPT is the optimal profit. We present an algorithm running in time Õ(n + (W + OPT)^{1.5}). This improves the running time in case n,W,OPT are roughly equal. - Exact Algorithm for Unbounded Knapsack: Unbounded Knapsack has known algorithms running in time Õ(n + min{n ⋅ p_max, n ⋅ w_max, p_max², w_max²}) [Axiotis, Tzamos '19, Jansen, Rohwedder '19, Chan, He '22], where n is the number of items, w_{max} is the largest weight of any item, and p_max is the largest profit of any item. We present an algorithm running in time Õ(n + (p_max + w_max)^{1.5}), giving a similar improvement as for 0-1-Knapsack. - Approximating Unbounded Knapsack with Resource Augmentation: Unbounded Knapsack has a known FPTAS with running time Õ(min{n/ε, n + 1/ε²}) [Jansen, Kraft '18]. We study weak approximation algorithms, which approximate the optimal profit but are allowed to overshoot the weight constraint (i.e. resource augmentation). We present the first approximation scheme for Unbounded Knapsack in this setting, achieving running time Õ(n + 1/ε^{1.5}). Along the way, we also give a simpler FPTAS with lower order improvement in the standard setting. For all of these problem settings the previously known results had matching conditional lower bounds. We avoid these lower bounds in the approximation setting by allowing resource augmentation, and in the exact setting by analyzing the time complexity in terms of weight and profit parameters (instead of only weight or only profit parameters). Our algorithms can be seen as reductions to Min-Plus-Convolution on monotone sequences with bounded entries. These structured instances of Min-Plus-Convolution can be solved in time O(n^1.5) [Chi, Duan, Xie, Zhang '22] (in contrast to the conjectured n^{2-o(1)} lower bound for the general case). We complement our results by showing reductions in the opposite direction, that is, we show that achieving our results with the constant 1.5 replaced by any constant < 2 implies subquadratic algorithms for Min-Plus-Convolution on monotone sequences with bounded entries.

Cite as

Karl Bringmann and Alejandro Cassis. Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.ICALP.2022.31,
  author =	{Bringmann, Karl and Cassis, Alejandro},
  title =	{{Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.31},
  URN =		{urn:nbn:de:0030-drops-163727},
  doi =		{10.4230/LIPIcs.ICALP.2022.31},
  annote =	{Keywords: Knapsack, Approximation Schemes, Fine-Grained Complexity, Min-Plus Convolution}
}
Document
Track A: Algorithms, Complexity and Games
A PTAS for Packing Hypercubes into a Knapsack

Authors: Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study the d-dimensional hypercube knapsack problem ({d}-D Hc-Knapsack) where we are given a set of d-dimensional hypercubes with associated profits, and a knapsack which is a unit d-dimensional hypercube. The goal is to find an axis-aligned non-overlapping packing of a subset of hypercubes such that the profit of the packed hypercubes is maximized. For this problem, Harren (ICALP'06) gave an algorithm with an approximation ratio of (1+1/2^d+ε). For d = 2, Jansen and Solis-Oba (IPCO'08) showed that the problem admits a polynomial-time approximation scheme (PTAS); Heydrich and Wiese (SODA'17) further improved the running time and gave an efficient polynomial-time approximation scheme (EPTAS). Both the results use structural properties of 2-D packing, which do not generalize to higher dimensions. For d > 2, it remains open to obtain a PTAS, and in fact, there has been no improvement since Harren’s result. We settle the problem by providing a PTAS. Our main technical contribution is a structural lemma which shows that any packing of hypercubes can be converted into another structured packing such that a high profitable subset of hypercubes is packed into a constant number of special hypercuboids, called 𝒱-Boxes and 𝒩-Boxes. As a side result, we give an almost optimal algorithm for a variant of the strip packing problem in higher dimensions. This might have applications for other multidimensional geometric packing problems.

Cite as

Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS for Packing Hypercubes into a Knapsack. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.ICALP.2022.78,
  author =	{Jansen, Klaus and Khan, Arindam and Lira, Marvin and Sreenivas, K. V. N.},
  title =	{{A PTAS for Packing Hypercubes into a Knapsack}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.78},
  URN =		{urn:nbn:de:0030-drops-164192},
  doi =		{10.4230/LIPIcs.ICALP.2022.78},
  annote =	{Keywords: Multidimensional knapsack, geometric packing, cube packing, strip packing}
}
Document
A Near-Linear-Time Algorithm for Weak Bisimilarity on Markov Chains

Authors: David N. Jansen, Jan Friso Groote, Ferry Timmers, and Pengfei Yang

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
This article improves the time bound for calculating the weak/branching bisimulation minimisation quotient on state-labelled discrete-time Markov chains from O(m n) to an expected-time O(m log⁴ n), where n is the number of states and m the number of transitions. For these results we assume that the set of state labels AP is small (|AP| ∈ O(m/n log⁴ n)). It follows the ideas of Groote et al. (ACM ToCL 2017) in combination with an efficient algorithm to handle decremental strongly connected components (Bernstein et al., STOC 2019).

Cite as

David N. Jansen, Jan Friso Groote, Ferry Timmers, and Pengfei Yang. A Near-Linear-Time Algorithm for Weak Bisimilarity on Markov Chains. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.CONCUR.2020.8,
  author =	{Jansen, David N. and Groote, Jan Friso and Timmers, Ferry and Yang, Pengfei},
  title =	{{A Near-Linear-Time Algorithm for Weak Bisimilarity on Markov Chains}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.8},
  URN =		{urn:nbn:de:0030-drops-128209},
  doi =		{10.4230/LIPIcs.CONCUR.2020.8},
  annote =	{Keywords: Behavioural Equivalence, weak Bisimulation, Markov Chain}
}
Document
C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width

Authors: Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
For a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that 1. the subgraph induced by each cluster is drawn in the interior of the corresponding disk, 2. each edge intersects any disk at most once, and 3. the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs, ESA'95], has only been recently settled [Fulek and Tóth, Atomic Embeddability, Clustered Planarity, and Thickenability, to appear at SODA'20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs. We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT algorithm for embedded clustered graphs, when parameterized by the carving-width of the dual graph of the input. This is the first FPT algorithm for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, in the general case, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Tóth. To further strengthen the relevance of this result, we show that the C-Planarity Testing problem retains its computational complexity when parameterized by several other graph-width parameters, which may potentially lead to faster algorithms.

Cite as

Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dalozzo_et_al:LIPIcs.IPEC.2019.9,
  author =	{Da Lozzo, Giordano and Eppstein, David and Goodrich, Michael T. and Gupta, Siddharth},
  title =	{{C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.9},
  URN =		{urn:nbn:de:0030-drops-114705},
  doi =		{10.4230/LIPIcs.IPEC.2019.9},
  annote =	{Keywords: Clustered planarity, carving-width, non-crossing partitions, FPT}
}
Document
Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems

Authors: Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
Let F be a family of graphs. A canonical vertex deletion problem corresponding to F is defined as follows: given an n-vertex undirected graph G and a weight function w: V(G) - >R^+, find a minimum weight subset S subseteq V(G) such that G-S belongs to F. This is known as Weighted F Vertex Deletion problem. In this paper we devise a recursive scheme to obtain O(log^{O(1)} n)-approximation algorithms for such problems, building upon the classical technique of finding balanced separators in a graph. Roughly speaking, our scheme applies to those problems, where an optimum solution S together with a well-structured set X, form a balanced separator of the input graph. In this paper, we obtain the first O(log^{O(1)} n)-approximation algorithms for the following vertex deletion problems. - Let {F} be a finite set of graphs containing a planar graph, and F=G(F) be the family of graphs such that every graph H in G(F) excludes all graphs in F as minors. The vertex deletion problem corresponding to F=G(F) is the Weighted Planar F-Minor-Free Deletion (WPF-MFD) problem. We give randomized and deterministic approximation algorithms for WPF-MFD with ratios O(log^{1.5} n) and O(log^2 n), respectively. Previously, only a randomized constant factor approximation algorithm for the unweighted version of the problem was known [FOCS 2012]. - We give an O(log^2 n)-factor approximation algorithm for Weighted Chordal Vertex Deletion (WCVD), the vertex deletion problem to the family of chordal graphs. On the way to this algorithm, we also obtain a constant factor approximation algorithm for Multicut on chordal graphs. - We give an O(log^3 n)-factor approximation algorithm for Weighted Distance Hereditary Vertex Deletion (WDHVD), also known as Weighted Rankwidth-1 Vertex Deletion (WR-1VD). This is the vertex deletion problem to the family of distance hereditary graphs, or equivalently, the family of graphs of rankwidth one. We believe that our recursive scheme can be applied to obtain O(log^{O(1)} n)-approximation algorithms for many other problems as well.

Cite as

Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.APPROX-RANDOM.2018.1,
  author =	{Agrawal, Akanksha and Lokshtanov, Daniel and Misra, Pranabendu and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.1},
  URN =		{urn:nbn:de:0030-drops-94058},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.1},
  annote =	{Keywords: Approximation Algorithms, Planar- F-Deletion, Separator}
}
Document
Improved Approximation Bounds for the Minimum Constraint Removal Problem

Authors: Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi Varadarajan

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
In the minimum constraint removal problem, we are given a set of geometric objects as obstacles in the plane, and we want to find the minimum number of obstacles that must be removed to reach a target point t from the source point s by an obstacle-free path. The problem is known to be intractable, and (perhaps surprisingly) no sub-linear approximations are known even for simple obstacles such as rectangles and disks. The main result of our paper is a new approximation technique that gives O(sqrt{n})-approximation for rectangles, disks as well as rectilinear polygons. The technique also gives O(sqrt{n})-approximation for the minimum color path problem in graphs. We also present some inapproximability results for the geometric constraint removal problem.

Cite as

Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi Varadarajan. Improved Approximation Bounds for the Minimum Constraint Removal Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.APPROX-RANDOM.2018.2,
  author =	{Bandyapadhyay, Sayan and Kumar, Neeraj and Suri, Subhash and Varadarajan, Kasturi},
  title =	{{Improved Approximation Bounds for the Minimum Constraint Removal Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.2},
  URN =		{urn:nbn:de:0030-drops-94066},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.2},
  annote =	{Keywords: Minimum Constraint Removal, Minimum Color Path, Barrier Resilience, Obstacle Removal, Obstacle Free Path, Approximation}
}
Document
Low Rank Approximation in the Presence of Outliers

Authors: Aditya Bhaskara and Srivatsan Kumar

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We consider the problem of principal component analysis (PCA) in the presence of outliers. Given a matrix A (d x n) and parameters k, m, the goal is to remove a set of at most m columns of A (outliers), so as to minimize the rank-k approximation error of the remaining matrix (inliers). While much of the work on this problem has focused on recovery of the rank-k subspace under assumptions on the inliers and outliers, we focus on the approximation problem. Our main result shows that sampling-based methods developed in the outlier-free case give non-trivial guarantees even in the presence of outliers. Using this insight, we develop a simple algorithm that has bi-criteria guarantees. Further, unlike similar formulations for clustering, we show that bi-criteria guarantees are unavoidable for the problem, under appropriate complexity assumptions.

Cite as

Aditya Bhaskara and Srivatsan Kumar. Low Rank Approximation in the Presence of Outliers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.APPROX-RANDOM.2018.4,
  author =	{Bhaskara, Aditya and Kumar, Srivatsan},
  title =	{{Low Rank Approximation in the Presence of Outliers}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.4},
  URN =		{urn:nbn:de:0030-drops-94087},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.4},
  annote =	{Keywords: Low rank approximation, PCA, Robustness to outliers}
}
Document
Greedy Bipartite Matching in Random Type Poisson Arrival Model

Authors: Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We introduce a new random input model for bipartite matching which we call the Random Type Poisson Arrival Model. Just like in the known i.i.d. model (introduced by Feldman et al. [Feldman et al., 2009]), online nodes have types in our model. In contrast to the adversarial types studied in the known i.i.d. model, following the random graphs studied in Mastin and Jaillet [A. Mastin, 2013], in our model each type graph is generated randomly by including each offline node in the neighborhood of an online node with probability c/n independently. In our model, nodes of the same type appear consecutively in the input and the number of times each type node appears is distributed according to the Poisson distribution with parameter 1. We analyze the performance of the simple greedy algorithm under this input model. The performance is controlled by the parameter c and we are able to exactly characterize the competitive ratio for the regimes c = o(1) and c = omega(1). We also provide a precise bound on the expected size of the matching in the remaining regime of constant c. We compare our results to the previous work of Mastin and Jaillet who analyzed the simple greedy algorithm in the G_{n,n,p} model where each online node type occurs exactly once. We essentially show that the approach of Mastin and Jaillet can be extended to work for the Random Type Poisson Arrival Model, although several nontrivial technical challenges need to be overcome. Intuitively, one can view the Random Type Poisson Arrival Model as the G_{n,n,p} model with less randomness; that is, instead of each online node having a new type, each online node has a chance of repeating the previous type.

Cite as

Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. Greedy Bipartite Matching in Random Type Poisson Arrival Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{borodin_et_al:LIPIcs.APPROX-RANDOM.2018.5,
  author =	{Borodin, Allan and Karavasilis, Christodoulos and Pankratov, Denis},
  title =	{{Greedy Bipartite Matching in Random Type Poisson Arrival Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.5},
  URN =		{urn:nbn:de:0030-drops-94098},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.5},
  annote =	{Keywords: bipartite matching, stochastic input models, online algorithms, greedy algorithms}
}
Document
Semi-Direct Sum Theorem and Nearest Neighbor under l_infty

Authors: Mark Braverman and Young Kun Ko

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We introduce semi-direct sum theorem as a framework for proving asymmetric communication lower bounds for the functions of the form V_{i=1}^n f(x,y_i). Utilizing tools developed in proving direct sum theorem for information complexity, we show that if the function is of the form V_{i=1}^n f(x,y_i) where Alice is given x and Bob is given y_i's, it suffices to prove a lower bound for a single f(x,y_i). This opens a new avenue of attack other than the conventional combinatorial technique (i.e. "richness lemma" from [Miltersen et al., 1995]) for proving randomized lower bounds for asymmetric communication for functions of such form. As the main technical result and an application of semi-direct sum framework, we prove an information lower bound on c-approximate Nearest Neighbor (ANN) under l_infty which implies that the algorithm of [Indyk, 2001] for c-approximate Nearest Neighbor under l_infty is optimal even under randomization for both decision tree and cell probe data structure model (under certain parameter assumption for the latter). In particular, this shows that randomization cannot improve [Indyk, 2001] under decision tree model. Previously only a deterministic lower bound was known by [Andoni et al., 2008] and randomized lower bound for cell probe model by [Kapralov and Panigrahy, 2012]. We suspect further applications of our framework in exhibiting randomized asymmetric communication lower bounds for big data applications.

Cite as

Mark Braverman and Young Kun Ko. Semi-Direct Sum Theorem and Nearest Neighbor under l_infty. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.APPROX-RANDOM.2018.6,
  author =	{Braverman, Mark and Ko, Young Kun},
  title =	{{Semi-Direct Sum Theorem and Nearest Neighbor under l\underlineinfty}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.6},
  URN =		{urn:nbn:de:0030-drops-94101},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.6},
  annote =	{Keywords: Asymmetric Communication Lower Bound, Data Structure Lower Bound, Nearest Neighbor Search}
}
Document
Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Authors: Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We study the distinct elements and l_p-heavy hitters problems in the sliding window model, where only the most recent n elements in the data stream form the underlying set. We first introduce the composable histogram, a simple twist on the exponential (Datar et al., SODA 2002) and smooth histograms (Braverman and Ostrovsky, FOCS 2007) that may be of independent interest. We then show that the composable histogram{} along with a careful combination of existing techniques to track either the identity or frequency of a few specific items suffices to obtain algorithms for both distinct elements and l_p-heavy hitters that are nearly optimal in both n and epsilon. Applying our new composable histogram framework, we provide an algorithm that outputs a (1+epsilon)-approximation to the number of distinct elements in the sliding window model and uses O{1/(epsilon^2) log n log (1/epsilon)log log n+ (1/epsilon) log^2 n} bits of space. For l_p-heavy hitters, we provide an algorithm using space O{(1/epsilon^p) log^2 n (log^2 log n+log 1/epsilon)} for 0<p <=2, improving upon the best-known algorithm for l_2-heavy hitters (Braverman et al., COCOON 2014), which has space complexity O{1/epsilon^4 log^3 n}. We also show complementing nearly optimal lower bounds of Omega ((1/epsilon) log^2 n+(1/epsilon^2) log n) for distinct elements and Omega ((1/epsilon^p) log^2 n) for l_p-heavy hitters, both tight up to O{log log n} and O{log 1/epsilon} factors.

Cite as

Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.APPROX-RANDOM.2018.7,
  author =	{Braverman, Vladimir and Grigorescu, Elena and Lang, Harry and Woodruff, David P. and Zhou, Samson},
  title =	{{Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.7},
  URN =		{urn:nbn:de:0030-drops-94118},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.7},
  annote =	{Keywords: Streaming algorithms, sliding windows, heavy hitters, distinct elements}
}
Document
Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

Authors: Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, and Daniel Vaz

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
In the Group Steiner Tree problem (GST), we are given a (edge or vertex)-weighted graph G=(V,E) on n vertices, together with a root vertex r and a collection of groups {S_i}_{i in [h]}: S_i subseteq V(G). The goal is to find a minimum-cost subgraph H that connects the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group S_i has a demand k_i in [k], k in N, and we wish to find a minimum-cost subgraph H subseteq G such that, for each group S_i, there is a vertex in the group that is connected to the root via k_i (vertex or edge) disjoint paths. While GST admits O(log^2 n log h) approximation, its higher connectivity variants are known to be Label-Cover hard, and for the vertex-weighted version, the hardness holds even when k=2 (it is widely believed that there is no subpolynomial approximation for the Label-Cover problem [Bellare et al., STOC 1993]). More precisely, the problem admits no 2^{log^{1-epsilon}n}-approximation unless NP subseteq DTIME(n^{polylog(n)}). Previously, positive results were known only for the edge-weighted version when k=2 [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where k_i disjoint paths from r may end at different vertices in a group [Chalermsook et al., SODA 2015], for which the authors gave a bicriteria approximation. For k >= 3, there is no non-trivial approximation algorithm known for edge-weighted Restricted Group SNDP, except for the special case of the relaxed variant on trees (folklore). Our main result is an O(log n log h) approximation algorithm for Restricted Group SNDP that runs in time n^{f(k, w)}, where w is the treewidth of the input graph. Our algorithm works for both edge and vertex weighted variants, and the approximation ratio nearly matches the lower bound when k and w are constants. The key to achieving this result is a non-trivial extension of a framework introduced in [Chalermsook et al., SODA 2017]. This framework first embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs.

Cite as

Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, and Daniel Vaz. Survivable Network Design for Group Connectivity in Low-Treewidth Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chalermsook_et_al:LIPIcs.APPROX-RANDOM.2018.8,
  author =	{Chalermsook, Parinya and Das, Syamantak and Even, Guy and Laekhanukit, Bundit and Vaz, Daniel},
  title =	{{Survivable Network Design for Group Connectivity in Low-Treewidth Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.8},
  URN =		{urn:nbn:de:0030-drops-94127},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.8},
  annote =	{Keywords: Approximation Algorithms, Hardness of Approximation, Survivable Network Design, Group Steiner Tree}
}
Document
Sherali-Adams Integrality Gaps Matching the Log-Density Threshold

Authors: Eden Chlamtác and Pasin Manurangsi

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
The log-density method is a powerful algorithmic framework which in recent years has given rise to the best-known approximations for a variety of problems, including Densest-k-Subgraph and Small Set Bipartite Vertex Expansion. These approximations have been conjectured to be optimal based on various instantiations of a general conjecture: that it is hard to distinguish a fully random combinatorial structure from one which contains a similar planted sub-structure with the same "log-density". We bolster this conjecture by showing that in a random hypergraph with edge probability n^{-alpha}, Omega(log n) rounds of Sherali-Adams cannot rule out the existence of a k-subhypergraph with edge density k^{-alpha-o(1)}, for any k and alpha. This holds even when the bound on the objective function is lifted. This gives strong integrality gaps which exactly match the gap in the above distinguishing problems, as well as the best-known approximations, for Densest k-Subgraph, Smallest p-Edge Subgraph, their hypergraph extensions, and Small Set Bipartite Vertex Expansion (or equivalently, Minimum p-Union). Previously, such integrality gaps were known only for Densest k-Subgraph for one specific parameter setting.

Cite as

Eden Chlamtác and Pasin Manurangsi. Sherali-Adams Integrality Gaps Matching the Log-Density Threshold. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chlamtac_et_al:LIPIcs.APPROX-RANDOM.2018.10,
  author =	{Chlamt\'{a}c, Eden and Manurangsi, Pasin},
  title =	{{Sherali-Adams Integrality Gaps Matching the Log-Density Threshold}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.10},
  URN =		{urn:nbn:de:0030-drops-94142},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.10},
  annote =	{Keywords: Approximation algorithms, integrality gaps, lift-and-project, log-density, Densest k-Subgraph}
}
Document
Communication Complexity of Correlated Equilibrium with Small Support

Authors: Anat Ganor and Karthik C. S.

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We define a two-player N x N game called the 2-cycle game, that has a unique pure Nash equilibrium which is also the only correlated equilibrium of the game. In this game, every 1/poly(N)-approximate correlated equilibrium is concentrated on the pure Nash equilibrium. We show that the randomized communication complexity of finding any 1/poly(N)-approximate correlated equilibrium of the game is Omega(N). For small approximation values, our lower bound answers an open question of Babichenko and Rubinstein (STOC 2017).

Cite as

Anat Ganor and Karthik C. S.. Communication Complexity of Correlated Equilibrium with Small Support. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ganor_et_al:LIPIcs.APPROX-RANDOM.2018.12,
  author =	{Ganor, Anat and C. S., Karthik},
  title =	{{Communication Complexity of Correlated Equilibrium with Small Support}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.12},
  URN =		{urn:nbn:de:0030-drops-94163},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.12},
  annote =	{Keywords: Correlated equilibrium, Nash equilibrium, Communication complexity}
}
Document
On Minrank and the Lovász Theta Function

Authors: Ishay Haviv

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
Two classical upper bounds on the Shannon capacity of graphs are the theta-function due to Lovász and the minrank parameter due to Haemers. We provide several explicit constructions of n-vertex graphs with a constant theta-function and minrank at least n^delta for a constant delta>0 (over various prime order fields). This implies a limitation on the theta-function-based algorithmic approach to approximating the minrank parameter of graphs. The proofs involve linear spaces of multivariate polynomials and the method of higher incidence matrices.

Cite as

Ishay Haviv. On Minrank and the Lovász Theta Function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{haviv:LIPIcs.APPROX-RANDOM.2018.13,
  author =	{Haviv, Ishay},
  title =	{{On Minrank and the Lov\'{a}sz Theta Function}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{13:1--13:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.13},
  URN =		{urn:nbn:de:0030-drops-94170},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.13},
  annote =	{Keywords: Minrank, Theta Function, Shannon capacity, Multivariate polynomials, Higher incidence matrices}
}
Document
On Sketching the q to p Norms

Authors: Aditya Krishnan, Sidhanth Mohanty, and David P. Woodruff

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We initiate the study of data dimensionality reduction, or sketching, for the q -> p norms. Given an n x d matrix A, the q -> p norm, denoted |A |_{q -> p} = sup_{x in R^d \ 0} |Ax |_p / |x |_q, is a natural generalization of several matrix and vector norms studied in the data stream and sketching models, with applications to datamining, hardness of approximation, and oblivious routing. We say a distribution S on random matrices L in R^{nd} - > R^k is a (k,alpha)-sketching family if from L(A), one can approximate |A |_{q -> p} up to a factor alpha with constant probability. We provide upper and lower bounds on the sketching dimension k for every p, q in [1, infty], and in a number of cases our bounds are tight. While we mostly focus on constant alpha, we also consider large approximation factors alpha, as well as other variants of the problem such as when A has low rank.

Cite as

Aditya Krishnan, Sidhanth Mohanty, and David P. Woodruff. On Sketching the q to p Norms. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{krishnan_et_al:LIPIcs.APPROX-RANDOM.2018.15,
  author =	{Krishnan, Aditya and Mohanty, Sidhanth and Woodruff, David P.},
  title =	{{On Sketching the q to p Norms}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.15},
  URN =		{urn:nbn:de:0030-drops-94192},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.15},
  annote =	{Keywords: Dimensionality Reduction, Norms, Sketching, Streaming}
}
  • Refine by Author
  • 5 Woodruff, David P.
  • 3 Grigorescu, Elena
  • 3 Guruswami, Venkatesan
  • 3 Servedio, Rocco A.
  • 2 Blasiok, Jaroslaw
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Approximation algorithms analysis
  • 3 Mathematics of computing → Information theory
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Mathematics of computing → Coding theory
  • 2 Theory of computation → Communication complexity
  • Show More...

  • Refine by Keyword
  • 4 Approximation Algorithms
  • 3 approximation algorithms
  • 3 communication complexity
  • 3 data streams
  • 3 property testing
  • Show More...

  • Refine by Type
  • 69 document

  • Refine by Publication Year
  • 34 2018
  • 23 2017
  • 3 2015
  • 2 2014
  • 2 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail