3 Search Results for "Jones, Paul"


Document
The Functional Machine Calculus II: Semantics

Authors: Chris Barrett, Willem Heijltjes, and Guy McCusker

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
The Functional Machine Calculus (FMC), recently introduced by the second author, is a generalization of the lambda-calculus which may faithfully encode the effects of higher-order mutable store, I/O and probabilistic/non-deterministic input. Significantly, it remains confluent and can be simply typed in the presence of these effects. In this paper, we explore the denotational semantics of the FMC. We have three main contributions: first, we argue that its syntax - in which both effects and lambda-calculus are realised using the same syntactic constructs - is semantically natural, corresponding closely to the structure of a Scott-style domain theoretic semantics. Second, we show that simple types confer strong normalization by extending Gandy’s proof for the lambda-calculus, including a small simplification of the technique. Finally, we show that the typed FMC (without considering the specifics of encoded effects), modulo an appropriate equational theory, is a complete language for Cartesian closed categories.

Cite as

Chris Barrett, Willem Heijltjes, and Guy McCusker. The Functional Machine Calculus II: Semantics. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{barrett_et_al:LIPIcs.CSL.2023.10,
  author =	{Barrett, Chris and Heijltjes, Willem and McCusker, Guy},
  title =	{{The Functional Machine Calculus II: Semantics}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.10},
  URN =		{urn:nbn:de:0030-drops-174716},
  doi =		{10.4230/LIPIcs.CSL.2023.10},
  annote =	{Keywords: lambda-calculus, computational effects, denotational semantics, strong normalization}
}
Document
Maximum Area Axis-Aligned Square Packings

Authors: Hugo A. Akitaya, Matthew D. Jones, David Stalfa, and Csaba D. Tóth

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Given a point set S={s_1,... , s_n} in the unit square U=[0,1]^2, an anchored square packing is a set of n interior-disjoint empty squares in U such that s_i is a corner of the ith square. The reach R(S) of S is the set of points that may be covered by such a packing, that is, the union of all empty squares anchored at points in S. It is shown that area(R(S))>= 1/2 for every finite set S subset U, and this bound is the best possible. The region R(S) can be computed in O(n log n) time. Finally, we prove that finding a maximum area anchored square packing is NP-complete. This is the first hardness proof for a geometric packing problem where the size of geometric objects in the packing is unrestricted.

Cite as

Hugo A. Akitaya, Matthew D. Jones, David Stalfa, and Csaba D. Tóth. Maximum Area Axis-Aligned Square Packings. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 77:1-77:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.MFCS.2018.77,
  author =	{Akitaya, Hugo A. and Jones, Matthew D. and Stalfa, David and T\'{o}th, Csaba D.},
  title =	{{Maximum Area Axis-Aligned Square Packings}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{77:1--77:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.77},
  URN =		{urn:nbn:de:0030-drops-96594},
  doi =		{10.4230/LIPIcs.MFCS.2018.77},
  annote =	{Keywords: square packing, geometric optimization}
}
Document
A Generic User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Authors: Paolo Masci, Yi Zhang, Paul Jones, Harold Thimbleby, and Paul Curzon

Published in: OASIcs, Volume 36, 5th Workshop on Medical Cyber-Physical Systems (2014)


Abstract
This paper presents a generic infusion pump user interface (GIP-UI) architecture that intends to capture the common characteristics and functionalities of interactive software incorporated in broad classes of infusion pumps. It is designed to facilitate the identification of use hazards and their causes in infusion pump designs. This architecture constitutes our first effort at establishing a model-based risk analysis methodology that helps manufacturers identify and mitigate use hazards in their products at early stages of the development life-cycle. The applicability of the GIP-UI architecture has been confirmed in a hazard analysis focusing on the number entry software of existing infusion pumps, in which the GIP-UI architecture is used to identify a substantial set of user interface design errors that may contribute to use hazards found in infusion pump incidents.

Cite as

Paolo Masci, Yi Zhang, Paul Jones, Harold Thimbleby, and Paul Curzon. A Generic User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software. In 5th Workshop on Medical Cyber-Physical Systems. Open Access Series in Informatics (OASIcs), Volume 36, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{masci_et_al:OASIcs.MCPS.2014.1,
  author =	{Masci, Paolo and Zhang, Yi and Jones, Paul and Thimbleby, Harold and Curzon, Paul},
  title =	{{A Generic User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software}},
  booktitle =	{5th Workshop on Medical Cyber-Physical Systems},
  pages =	{1--14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-66-8},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{36},
  editor =	{Turau, Volker and Kwiatkowska, Marta and Mangharam, Rahul and Weyer, Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.MCPS.2014.1},
  URN =		{urn:nbn:de:0030-drops-45185},
  doi =		{10.4230/OASIcs.MCPS.2014.1},
  annote =	{Keywords: Infusion Pump, Hazard analysis, Use hazards, User Interface, Interactive software, Design errors}
}
  • Refine by Author
  • 1 Akitaya, Hugo A.
  • 1 Barrett, Chris
  • 1 Curzon, Paul
  • 1 Heijltjes, Willem
  • 1 Jones, Matthew D.
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorial optimization
  • 1 Theory of computation
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 1 Design errors
  • 1 Hazard analysis
  • 1 Infusion Pump
  • 1 Interactive software
  • 1 Use hazards
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2014
  • 1 2018
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail