125 Search Results for "Kalai, Yael Tauman"


Volume

LIPIcs, Volume 251

14th Innovations in Theoretical Computer Science Conference (ITCS 2023)

ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA

Editors: Yael Tauman Kalai

Volume

LIPIcs, Volume 163

1st Conference on Information-Theoretic Cryptography (ITC 2020)

ITC 2020, June 17-19, 2020, Boston, MA, USA

Editors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs

Document
Complete Volume
LIPIcs, Volume 251, ITCS 2023, Complete Volume

Authors: Yael Tauman Kalai

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
LIPIcs, Volume 251, ITCS 2023, Complete Volume

Cite as

14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 1-2102, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{taumankalai:LIPIcs.ITCS.2023,
  title =	{{LIPIcs, Volume 251, ITCS 2023, Complete Volume}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{1--2102},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023},
  URN =		{urn:nbn:de:0030-drops-175027},
  doi =		{10.4230/LIPIcs.ITCS.2023},
  annote =	{Keywords: LIPIcs, Volume 251, ITCS 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Yael Tauman Kalai

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 0:i-0:xxii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{taumankalai:LIPIcs.ITCS.2023.0,
  author =	{Tauman Kalai, Yael},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{0:i--0:xxii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.0},
  URN =		{urn:nbn:de:0030-drops-175039},
  doi =		{10.4230/LIPIcs.ITCS.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Worst-Case to Expander-Case Reductions

Authors: Amir Abboud and Nathan Wallheimer

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In recent years, the expander decomposition method was used to develop many graph algorithms, resulting in major improvements to longstanding complexity barriers. This powerful hammer has led the community to (1) believe that most problems are as easy on worst-case graphs as they are on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining longstanding barriers in fine-grained complexity. We set out to investigate the extent to which these two things are true (and for which problems). Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We design a collection of such reductions for fundamental graph problems, verifying belief (1) for them. The list includes k-Clique, 4-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple gadget reduction, not via expander decompositions, showing that this hammer is effectively useless against the problem and contradicting (2).

Cite as

Amir Abboud and Nathan Wallheimer. Worst-Case to Expander-Case Reductions. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ITCS.2023.1,
  author =	{Abboud, Amir and Wallheimer, Nathan},
  title =	{{Worst-Case to Expander-Case Reductions}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.1},
  URN =		{urn:nbn:de:0030-drops-175044},
  doi =		{10.4230/LIPIcs.ITCS.2023.1},
  annote =	{Keywords: Fine-Grained Complexity, Expander Decomposition, Reductions, Exact and Parameterized Complexity, Expander Graphs, Triangle, Maximum Matching, Clique, 4-Cycle, Vertex Cover, Dominating Set}
}
Document
Matroid Partition Property and the Secretary Problem

Authors: Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A matroid M on a set E of elements has the α-partition property, for some α > 0, if it is possible to (randomly) construct a partition matroid 𝒫 on (a subset of) elements of M such that every independent set of 𝒫 is independent in M and for any weight function w:E → ℝ_{≥0}, the expected value of the optimum of the matroid secretary problem on 𝒫 is at least an α-fraction of the optimum on M. We show that the complete binary matroid, B_d on 𝔽₂^d does not satisfy the α-partition property for any constant α > 0 (independent of d). Furthermore, we refute a recent conjecture of [Kristóf Bérczi et al., 2021] by showing the same matroid is 2^d/d-colorable but cannot be reduced to an α 2^d/d-colorable partition matroid for any α that is sublinear in d.

Cite as

Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. Matroid Partition Property and the Secretary Problem. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 2:1-2:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abdolazimi_et_al:LIPIcs.ITCS.2023.2,
  author =	{Abdolazimi, Dorna and Karlin, Anna R. and Klein, Nathan and Oveis Gharan, Shayan},
  title =	{{Matroid Partition Property and the Secretary Problem}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{2:1--2:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.2},
  URN =		{urn:nbn:de:0030-drops-175051},
  doi =		{10.4230/LIPIcs.ITCS.2023.2},
  annote =	{Keywords: Online algorithms, Matroids, Matroid secretary problem}
}
Document
Kolmogorov Complexity Characterizes Statistical Zero Knowledge

Authors: Eric Allender, Shuichi Hirahara, and Harsha Tirumala

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof system if and only if it is randomly reducible via an honest polynomial-time reduction to a promise problem for Kolmogorov-random strings, with a superlogarithmic additive approximation term. This extends recent work by Saks and Santhanam (CCC 2022). We build on this to give new characterizations of Statistical Zero Knowledge SZK, as well as the related classes NISZK_L and SZK_L.

Cite as

Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov Complexity Characterizes Statistical Zero Knowledge. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.ITCS.2023.3,
  author =	{Allender, Eric and Hirahara, Shuichi and Tirumala, Harsha},
  title =	{{Kolmogorov Complexity Characterizes Statistical Zero Knowledge}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.3},
  URN =		{urn:nbn:de:0030-drops-175063},
  doi =		{10.4230/LIPIcs.ITCS.2023.3},
  annote =	{Keywords: Kolmogorov Complexity, Interactive Proofs}
}
Document
Communication Complexity of Inner Product in Symmetric Normed Spaces

Authors: Alexandr Andoni, Jarosław Błasiok, and Arnold Filtser

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm N on the space ℝⁿ. Here, Alice and Bob hold two vectors v,u such that ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1, where N^* is the dual norm. The goal is to compute their inner product ⟨v,u⟩ up to an ε additive term. The problem is denoted by IP_N, and generalizes important previously studied problems, such as: (1) Computing the expectation 𝔼_{x∼𝒟}[f(x)] when Alice holds 𝒟 and Bob holds f is equivalent to IP_{𝓁₁}. (2) Computing v^TAv where Alice has a symmetric matrix with bounded operator norm (denoted S_∞) and Bob has a vector v where ‖v‖₂ = 1. This problem is complete for quantum communication complexity and is equivalent to IP_{S_∞}. We systematically study IP_N, showing the following results, near tight in most cases: 1) For any symmetric norm N, given ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1 there is a randomized protocol using 𝒪̃(ε^{-6} log n) bits of communication that returns a value in ⟨u,v⟩±ε with probability 2/3 - we will denote this by ℛ_{ε,1/3}(IP_N) ≤ 𝒪̃(ε^{-6} log n). In a special case where N = 𝓁_p and N^* = 𝓁_q for p^{-1} + q^{-1} = 1, we obtain an improved bound ℛ_{ε,1/3}(IP_{𝓁_p}) ≤ 𝒪(ε^{-2} log n), nearly matching the lower bound ℛ_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(min(n, ε^{-2})). 2) One way communication complexity ℛ^{→}_{ε,δ}(IP_{𝓁_p}) ≤ 𝒪(ε^{-max(2,p)}⋅ log n/ε), and a nearly matching lower bound ℛ^{→}_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(ε^{-max(2,p)}) for ε^{-max(2,p)} ≪ n. 3) One way communication complexity ℛ^{→}_{ε,δ}(N) for a symmetric norm N is governed by the distortion of the embedding 𝓁_∞^k into N. Specifically, while a small distortion embedding easily implies a lower bound Ω(k), we show that, conversely, non-existence of such an embedding implies protocol with communication k^𝒪(log log k) log² n. 4) For arbitrary origin symmetric convex polytope P, we show ℛ_{ε,1/3}(IP_{N}) ≤ 𝒪(ε^{-2} log xc(P)), where N is the unique norm for which P is a unit ball, and xc(P) is the extension complexity of P (i.e. the smallest number of inequalities describing some polytope P' s.t. P is projection of P').

Cite as

Alexandr Andoni, Jarosław Błasiok, and Arnold Filtser. Communication Complexity of Inner Product in Symmetric Normed Spaces. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{andoni_et_al:LIPIcs.ITCS.2023.4,
  author =	{Andoni, Alexandr and B{\l}asiok, Jaros{\l}aw and Filtser, Arnold},
  title =	{{Communication Complexity of Inner Product in Symmetric Normed Spaces}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.4},
  URN =		{urn:nbn:de:0030-drops-175077},
  doi =		{10.4230/LIPIcs.ITCS.2023.4},
  annote =	{Keywords: communication complexity, symmetric norms}
}
Document
Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations

Authors: Anurag Anshu and Tony Metger

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We prove concentration bounds for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [De Palma et al., 2022]; (ii) injective matrix product states; (iii) output states of dense Hamiltonian evolution, i.e. states of the form e^{ιH^{(p)}} ⋯ e^{ιH^{(1)}} |ψ₀⟩ for any n-qubit product state |ψ₀⟩, where each H^{(i)} can be any local commuting Hamiltonian satisfying a norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use polynomial approximations to show that these states are close to local operators. This implies that the distribution of the Hamming weight of a computational basis measurement (and of other related observables) concentrates. An example of (iii) are the states produced by the quantum approximate optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a random spin model, the QAOA can only succeed with negligible probability even at super-constant level p = o(log log n), assuming a strengthened version of the so-called overlap gap property. This gives the first limitations on the QAOA on dense instances at super-constant level, improving upon the recent result [Basso et al., 2022].

Cite as

Anurag Anshu and Tony Metger. Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 5:1-5:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.ITCS.2023.5,
  author =	{Anshu, Anurag and Metger, Tony},
  title =	{{Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{5:1--5:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.5},
  URN =		{urn:nbn:de:0030-drops-175085},
  doi =		{10.4230/LIPIcs.ITCS.2023.5},
  annote =	{Keywords: quantum computing, polynomial approximation, quantum optimization algorithm, QAOA, overlap gap property}
}
Document
On Identity Testing and Noncommutative Rank Computation over the Free Skew Field

Authors: V. Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
The identity testing of rational formulas (RIT) in the free skew field efficiently reduces to computing the rank of a matrix whose entries are linear polynomials in noncommuting variables [Hrubeš and Wigderson, 2015]. This rank computation problem has deterministic polynomial-time white-box algorithms [Ankit Garg et al., 2016; Ivanyos et al., 2018] and a randomized polynomial-time algorithm in the black-box setting [Harm Derksen and Visu Makam, 2017]. In this paper, we propose a new approach for efficient derandomization of black-box RIT. Additionally, we obtain results for matrix rank computation over the free skew field and construct efficient linear pencil representations for a new class of rational expressions. More precisely, we show: - Under the hardness assumption that the ABP (algebraic branching program) complexity of every polynomial identity for the k×k matrix algebra is 2^Ω(k) [Andrej Bogdanov and Hoeteck Wee, 2005], we obtain a subexponential-time black-box RIT algorithm for rational formulas of inversion height almost logarithmic in the size of the formula. This can be seen as the first "hardness implies derandomization" type theorem for rational formulas. - We show that the noncommutative rank of any matrix over the free skew field whose entries have small linear pencil representations can be computed in deterministic polynomial time. While an efficient rank computation was known for matrices with noncommutative formulas as entries [Ankit Garg et al., 2020], we obtain the first deterministic polynomial-time algorithms for rank computation of matrices whose entries are noncommutative ABPs or rational formulas. - Motivated by the definition given by Bergman [George M Bergman, 1976], we define a new class of rational functions where a rational function of inversion height at most h is defined as a composition of a noncommutative r-skewed circuit (equivalently an ABP) with inverses of rational functions of this class of inversion height at most h-1 which are also disjoint. We obtain a polynomial-size linear pencil representation for this class which gives a white-box deterministic polynomial-time identity testing algorithm for the class.

Cite as

V. Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya. On Identity Testing and Noncommutative Rank Computation over the Free Skew Field. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.ITCS.2023.6,
  author =	{Arvind, V. and Chatterjee, Abhranil and Ghosal, Utsab and Mukhopadhyay, Partha and Ramya, C.},
  title =	{{On Identity Testing and Noncommutative Rank Computation over the Free Skew Field}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-175093},
  doi =		{10.4230/LIPIcs.ITCS.2023.6},
  annote =	{Keywords: Algebraic Complexity, Identity Testing, Non-commutative rank}
}
Document
All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method

Authors: Sepehr Assadi, Aaron Bernstein, and Zachary Langley

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In the weighted load balancing problem, the input is an n-vertex bipartite graph between a set of clients and a set of servers, and each client comes with some nonnegative real weight. The output is an assignment that maps each client to one of its adjacent servers, and the load of a server is then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is well-balanced, typically captured by (approximately) minimizing either the 𝓁_∞- or 𝓁₂-norm of the server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for an assignment that approximately minimizes all 𝓁_p-norm objectives for p ≥ 1, including p = ∞, simultaneously. Our main result is a deterministic O(log n)-pass O(1)-approximation semi-streaming algorithm for the all-norm load balancing problem. Prior to our work, only an O(log n)-pass O(log n)-approximation algorithm for the 𝓁_∞-norm objective was known in the semi-streaming setting. Our algorithm uses a novel application of the multiplicative weights update method to a mixed covering/packing convex program for the all-norm load balancing problem involving an infinite number of constraints.

Cite as

Sepehr Assadi, Aaron Bernstein, and Zachary Langley. All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.ITCS.2023.7,
  author =	{Assadi, Sepehr and Bernstein, Aaron and Langley, Zachary},
  title =	{{All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.7},
  URN =		{urn:nbn:de:0030-drops-175106},
  doi =		{10.4230/LIPIcs.ITCS.2023.7},
  annote =	{Keywords: Load Balancing, Semi-Streaming Algorithms, Semi-Matching}
}
Document
A Framework for Adversarial Streaming via Differential Privacy and Difference Estimators

Authors: Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Classical streaming algorithms operate under the (not always reasonable) assumption that the input stream is fixed in advance. Recently, there is a growing interest in designing robust streaming algorithms that provide provable guarantees even when the input stream is chosen adaptively as the execution progresses. We propose a new framework for robust streaming that combines techniques from two recently suggested frameworks by Hassidim et al. [NeurIPS 2020] and by Woodruff and Zhou [FOCS 2021]. These recently suggested frameworks rely on very different ideas, each with its own strengths and weaknesses. We combine these two frameworks into a single hybrid framework that obtains the "best of both worlds", thereby solving a question left open by Woodruff and Zhou.

Cite as

Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A Framework for Adversarial Streaming via Differential Privacy and Difference Estimators. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{attias_et_al:LIPIcs.ITCS.2023.8,
  author =	{Attias, Idan and Cohen, Edith and Shechner, Moshe and Stemmer, Uri},
  title =	{{A Framework for Adversarial Streaming via Differential Privacy and Difference Estimators}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-175115},
  doi =		{10.4230/LIPIcs.ITCS.2023.8},
  annote =	{Keywords: Streaming, adversarial robustness, differential privacy}
}
Document
Making Auctions Robust to Aftermarkets

Authors: Moshe Babaioff, Nicole Immorlica, Yingkai Li, and Brendan Lucier

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A prevalent assumption in auction theory is that the auctioneer has full control over the market and that the allocation she dictates is final. In practice, however, agents might be able to resell acquired items in an aftermarket. A prominent example is the market for carbon emission allowances. These allowances are commonly allocated by the government using uniform-price auctions, and firms can typically trade these allowances among themselves in an aftermarket that may not be fully under the auctioneer’s control. While the uniform-price auction is approximately efficient in isolation, we show that speculation and resale in aftermarkets might result in a significant welfare loss. Motivated by this issue, we consider three approaches, each ensuring high equilibrium welfare in the combined market. The first approach is to adopt smooth auctions such as discriminatory auctions. This approach is robust to correlated valuations and to participants acquiring information about others' types. However, discriminatory auctions have several downsides, notably that of charging bidders different prices for identical items, resulting in fairness concerns that make the format unpopular. Two other approaches we suggest are either using posted-pricing mechanisms, or using uniform-price auctions with anonymous reserves. We show that when using balanced prices, both these approaches ensure high equilibrium welfare in the combined market. The latter also inherits many of the benefits from uniform-price auctions such as price discovery, and can be introduced with a minor modification to auctions currently in use to sell carbon emission allowances.

Cite as

Moshe Babaioff, Nicole Immorlica, Yingkai Li, and Brendan Lucier. Making Auctions Robust to Aftermarkets. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{babaioff_et_al:LIPIcs.ITCS.2023.9,
  author =	{Babaioff, Moshe and Immorlica, Nicole and Li, Yingkai and Lucier, Brendan},
  title =	{{Making Auctions Robust to Aftermarkets}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.9},
  URN =		{urn:nbn:de:0030-drops-175122},
  doi =		{10.4230/LIPIcs.ITCS.2023.9},
  annote =	{Keywords: carbon markets, aftermarkets, price of anarchy, multi-unit auctions, posted prices}
}
Document
Efficiently Testable Circuits

Authors: Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In this work, we put forward the notion of "efficiently testable circuits" and provide circuit compilers that transform any circuit into an efficiently testable one. Informally, a circuit is testable if one can detect tampering with the circuit by evaluating it on a small number of inputs from some test set. Our technical contribution is a compiler that transforms any circuit C into a testable circuit (Ĉ,𝕋̂) for which we can detect arbitrary tampering with all wires in Ĉ. The notion of a testable circuit is weaker or incomparable to existing notions of tamper-resilience, which aim to detect or even correct for errors introduced by tampering during every query, but our new notion is interesting in several settings, and we achieve security against much more general tampering classes - like tampering with all wires - with very modest overhead. Concretely, starting from a circuit C of size n and depth d, for any L (think of L as a small constant, say L = 4), we get a testable (Ĉ,𝕋̂) where Ĉ is of size ≈ 12n and depth d+log(n)+L⋅ n^{1/L}. The test set 𝕋̂ is of size 4⋅ 2^L. The number of extra input and output wires (i.e., pins) we need to add for the testing is 3+L and 2^L, respectively.

Cite as

Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak. Efficiently Testable Circuits. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 10:1-10:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baig_et_al:LIPIcs.ITCS.2023.10,
  author =	{Baig, Mirza Ahad and Chakraborty, Suvradip and Dziembowski, Stefan and Ga{\l}\k{a}zka, Ma{\l}gorzata and Lizurej, Tomasz and Pietrzak, Krzysztof},
  title =	{{Efficiently Testable Circuits}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{10:1--10:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.10},
  URN =		{urn:nbn:de:0030-drops-175130},
  doi =		{10.4230/LIPIcs.ITCS.2023.10},
  annote =	{Keywords: circuit compilers, circuit integrity, circuit testing}
}
Document
Strategyproof Scheduling with Predictions

Authors: Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In their seminal paper that initiated the field of algorithmic mechanism design, Nisan and Ronen [Noam Nisan and Amir Ronen, 1999] studied the problem of designing strategyproof mechanisms for scheduling jobs on unrelated machines aiming to minimize the makespan. They provided a strategyproof mechanism that achieves an n-approximation and they made the bold conjecture that this is the best approximation achievable by any deterministic strategyproof scheduling mechanism. After more than two decades and several efforts, n remains the best known approximation and very recent work by Christodoulou et al. [George Christodoulou et al., 2021] has been able to prove an Ω(√n) approximation lower bound for all deterministic strategyproof mechanisms. This strong negative result, however, heavily depends on the fact that the performance of these mechanisms is evaluated using worst-case analysis. To overcome such overly pessimistic, and often uninformative, worst-case bounds, a surge of recent work has focused on the "learning-augmented framework", whose goal is to leverage machine-learned predictions to obtain improved approximations when these predictions are accurate (consistency), while also achieving near-optimal worst-case approximations even when the predictions are arbitrarily wrong (robustness). In this work, we study the classic strategic scheduling problem of Nisan and Ronen [Noam Nisan and Amir Ronen, 1999] using the learning-augmented framework and give a deterministic polynomial-time strategyproof mechanism that is 6-consistent and 2n-robust. We thus achieve the "best of both worlds": an O(1) consistency and an O(n) robustness that asymptotically matches the best-known approximation. We then extend this result to provide more general worst-case approximation guarantees as a function of the prediction error. Finally, we complement our positive results by showing that any 1-consistent deterministic strategyproof mechanism has unbounded robustness.

Cite as

Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof Scheduling with Predictions. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{balkanski_et_al:LIPIcs.ITCS.2023.11,
  author =	{Balkanski, Eric and Gkatzelis, Vasilis and Tan, Xizhi},
  title =	{{Strategyproof Scheduling with Predictions}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.11},
  URN =		{urn:nbn:de:0030-drops-175143},
  doi =		{10.4230/LIPIcs.ITCS.2023.11},
  annote =	{Keywords: Mechanism Design with Predictions, Strategyproof Scheduling}
}
  • Refine by Author
  • 5 Tauman Kalai, Yael
  • 4 Manurangsi, Pasin
  • 3 Ghazi, Badih
  • 3 Kumar, Ravi
  • 3 Saxena, Raghuvansh R.
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Cryptographic primitives
  • 9 Theory of computation → Complexity classes
  • 9 Theory of computation → Computational complexity and cryptography
  • 6 Theory of computation → Circuit complexity
  • 6 Theory of computation → Communication complexity
  • Show More...

  • Refine by Keyword
  • 5 Differential Privacy
  • 3 Interactive Proofs
  • 3 Property Testing
  • 3 Streaming
  • 3 TFNP
  • Show More...

  • Refine by Type
  • 123 document
  • 2 volume

  • Refine by Publication Year
  • 104 2023
  • 20 2020
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail